Testing MakeShaper PLA

Below are our notes that reflect our new open source filament testing. ASTM test samples are being created and in the upcoming months you can anticipate a summary on our website about our adventures in 3D printing material science. 

Material Tested: MakeShaper PLA

Manufacturer: MakeShaper PLA

Filament Diameter: 3.00 mm

Color Tested: Orange

Date Tested: 4/01/2016

OBSERVATIONS

Ease of use: Working with this filament was very enjoyable. It printed easily, was consistent and predictable. No breakage was noticed. The PLA appeared to be of a high quality.

Appearance: The filament exhibited a pleasing orange tone that even the greatest orange pantone haters on our team found appealing. A slight sheen presented when printed.

Size consistency: Awesome, less than 0.1mm within the roll, however the filament measured 2.87mm, not 3mm

Color consistency: Great, consistent throughout the coil.

SETTINGS

Print temperature: 190-215 C (suggested)/202C was used: nozzle / 60C : bed

Printer Used: Gigabot

Speed: 60 mm/s

Layer Height: 0.3mm

Infill: 15%

Type(s) of print surface used: PRINTnZ

List of test files printed: re:3D’s test files 1, 2, and 3 (logo, vase, and Benchy Torture Test). After April’s UX meeting, it was decided to also print a Moai as a 4th print.

You view watch a video summarizing our testing here:

FINDINGS

Odor: None

Bed adhesion (1: terrible – 5: fabulous!)

  • 5- Great adhesion was achieved with no temperature manipulation.

Stringing (1: lots – 5: none!)

  • 5 –No stringing was observed with our settings.

Shrinkage (1: lots – 5: none!)

  • 5- The filament extruded and cooled with no shrinkage.

Interlayer adhesion (1: terrible – 5: fabulous!)

  • 5- Perfect!
IMG_2556

NOTES:

  • The community is fortunate to have several PLA vendors to select from, however we’ve heard cautionary tales from many of our customers that all PLA is not created equal. MakeShaper PLA boasts that it is a high quality and dependable PLA.
  • Seeing that we offer a limited color selection in our store, we are always eager to test additional PLA sources in order refer customers to other reputable consumer retailers.
  • This material appears to yield consistent, quality prints.
  • Filament size consistency was excellent and no breakage was evident in the 1 kg roll we examined, suggesting it was well mixed.
  • No curling was observed in any of the 4 prints created.
  • We used the mid point of the temperature range that the manufacture provided (190-225C). No guidance was given for settings aside from temperature, so we used the standard Simplify3D profile on wiki.re3d.org.
  • The unboxing experience was well done and the recommendation sheet was professional.
    • A batch number was provided for traceability.
    • Manufacturer recommended settings were easily referenced on the enclosed documentation.

RECCOMENDATIONS:

  • After printing 4 objects in our protocol, I support MakeShaper’s claims that they produce high quality PLA and would recommend it to our customers.
  • Upon review, we would also recommend that we include this filament in our ASTM test sample research.
IMG_2553

Want to chat? Join our forum where we have initiated a thread about our experience!

https://re3d.zendesk.com/hc/en-us/community/posts/206511376-Testing-MakeShaper-PLA

~Happy Printing!

Samantha snabes

Blog Post Author

3D Printing A Superman Hood Emblem

Intern Jacob Lehmann shares on his recent DIY solution to personalize his aging Beetle.

My 3D printed Superman Hood Emblem

By: Jacob Lehmann

I work at re:3D and my job is to figure out and test cool and unique ways to use our 3d printers. I have 2003 VW beetle (and I love it) but some of the aesthetics have been worn and aged poorly over the years. So I had the idea to custom print a rear hood ornament. My amazing bosses thought this was a great idea and helped me to design and realize this idea.

It was hard to pick what exactly I wanted to make for my car. After running through tons of ideas I finally decided that because of the deep sienna blue of my vehicle that a superman logo would look amazing on it. This is a picture of my car after I peeled off the old rusty and broken VW emblem.

First I designed the hood emblem in a free Cad software called Onshape. You can access the tool at this link: https://www.onshape.com/ if you are interested. 

After slicing the file for printing, we put it on the Gigabot and watched it come to life!

And then we tested it on my car.  After looking at it closely, I decided I wasn’t happy with the size and printed a second to fill up the space better.

testingprint

Before we started we knew that the final solution wasn’t going to be in PLA.  In the Texas summer sun, thermoplastics such as PLA warp when left in a car, let alone on the boiling hood. Although this material is perfect for 3d printing because it melts at roughly 190+ Celsius, that very feature makes it hard to use outdoors, inside of engines, or pretty much anywhere that gets hot.

Thankfully our friends at Deep in the Heart Art Foundry (who own some of our Gigabots and use them in their lost wax casting) were more than happy to help us cast an alternative. We originally wanted to cast the piece in bronze and patina it, but they suggested that it would look better and be much lighter to cast it in Stainless steel. You can check out some of their amazing works of art here http://www.deepintheheart.net/. Here is the piece once we got it back (with a little bit of polishing).

unpolished

And after I finished polishing and sanding the piece.

polished

Here is the finished stainless steel piece next to the smaller PLA prototype.

Now all that was left to do was mount it on my vehicle. After cleaning the surface of my rear hood and the backside of the piece with some alcohol, and removing all the dust and grime, I placed some 3m double-sided tape on my car. NOTE: my bosses were concerned for my and other driver’s safety and have since purchased industrial epoxy.

3mtape

And finally, the beautiful hood emblem is complete and placed on my car. Now I can drive around fighting DC supervillains as much as I want.

final

Happy printing!

Jacob Lehmann

Blog Post Author

@jacobelehmann

Filament Testing – Scorpion Flexible Nylon by Black Magic 3D

Below are our notes that respect our new open source filament testing. ASTM test samples are being created and in the upcoming months you can anticipate a summary on our website that reflects our adventures in 3D printing material science. 

Material Tested: Scorpion Flexible Nylon

Manufacturer: Black Magic 3D

Filament Diameter: – 2.85mm

Color Tested: Natural

Date Tested: 4/06/2016

IMG_2511

OBSERVATIONS

Ease of use: Those new to 3D printing may want to budget extra time when printing with Scorpion as it takes a little manipulation to perfect the temperature & retraction settings.

Appearance: The natural filament was clean and consistent. Prints matched filament color & opacity.

Size consistency: Awesome, less than 0.1mm within the roll.

Color consistency: Great, consistent throughout the coil.

IMG_2507

SETTINGS

Print temperature: 230-235 C (suggested): nozzle / 60C : bed

Printer Used: Gigabot

Speed: 50 mm/s

Layer Height: 0.3mm

Infill: 15%

Type(s) of print surface used: PRINTnZ with 3M Blue Painter’s Tape and 2 coats of Elmer’s Glue Stick

List of test files printed: re:3D’s test files 1, 2, and 3 (logo, vase, and Benchy Torture Test)

You view watch a video summarizing our testing below:

FINDINGS

Odor: None

Bed adhesion (1: terrible – 5: fabulous!)

  • 4- Great adhesion could be achieved, but required two coats of PVA glue stick, painter’s tape, and the highest heat setting suggested for the bed and nozzle.

Stringing (1: lots – 5: none!)

  • 4 -Stringing was observed across lettering, however doubling the retraction settings eliminated the problem.

Shrinkage (1: lots – 5: none!)

  • 4- Some curling was observed on corners of logo after removal. It is suggested that the print be allowed to cool down on the bed before taking it off.

Interlayer adhesion (1: terrible – 5: fabulous!)

  • 5- Perfect!
IMG_2508

NOTES:

  • A flexible nylon offers a lot of possibility to the 3D printing community
    • This filament appears to overcome concerns that both flexible and nylon materials are difficult to use.
    • With the right settings and adhesion hygiene, this material appears to yield consistent, quality prints.
  • NOTE: this filament required 2 coats of Elmer glue stick on Blue Painter’s tape applied over a heated bed, using the max range of bed and nozzle heat settings
  • Filament size consistency was excellent.
  • Curling was observed with only 1 coat of glue stick and was also seen after print removal when the bed was still warm.
    • It is recommended that the bed be allowed to cool before removal to mitigate curling after print completion.
  • The best testing outcomes were observed at the highest temperatures settings (235C -nozzle, 60C- bed) and using the speed (50mm/s) that the manufacture provided. No guidance was given for retraction, which we found we needed to double or standard setting in order to eliminate stringing across lettering.
  • The unboxing experience was well done and the recommendation sheet was very useful. 
    • No date stamp for production was listed, however a batch number was provided for traceability.
    • Manufacturer recommended settings were easily referenced on the enclosed documentation.
IMG_2510

RECCOMENDATIONS:

  • This filament is extremely impressive and more than exceeded expectations due to past expereinces working with nylons and flexible materials.
  • Upon review, we would highly recommend that larger, more complex prints be created to further investigate the potential this exotic, and much needed material provides.
IMG_2368

Want to chat? Join our forum where we have initiated a thread about our experience!

https://re3d.zendesk.com/hc/en-us/community/posts/206375086-Testing-Scorpion-Flexible-Nylon-on-Gigabot

~Happy Printing!

Samantha snabes

Blog Post Author

February Puzzler Solution Revealed!

Below is the solution to the Monthly Puzzler Chief Hacker presented in our February Newsletter. Want to play? You can sign up to receive our monthly publication by submitting your email address in the sign up at the bottom of re:3D.org. Proposed answers are presented on our forum at: https://re3d.zendesk.com/hc/en-us/community/posts/205859796-February-Puzzler

THE SOLUTION

Here are the two reasons you will see a visible mark between processes.

Answer #1. If the SECOND process settings (upper part of the print) has “First layer height” that does not match the layer height for the FIRST process there will be an odd layer thickness visible on your print. Make sure the first layer height and first layer speed for the SECOND process are set to 100%

Answer #2. When setting the “Stop Printing at Height” make sure the dimension is an even multiple of your layer height. Don’t forget to account for any changes in layer height if you enter a value other than 100% for the FIRST process “First Layer Height”!

Since Darrel had one of the two correct answers we will be sending you half a spool of filament 🙂  Just kidding Darrel! Thanks for playing and keep an eye out for next month’s puzzler.

Happy Printing!

Matthew Fiedler

Blog Post Author

@chief_hacker

Filament Testing – 3D Fuel Advanced PLA

Below are our notes that respect our new open source filament testing. ASTM test samples are being created and in the upcoming months you can anticipate a summary on our website that reflects our adventures in 3D printing material science. 

Material Tested: 3D FUEL/APLA

Manufacturer: 3D Fuel

Filament Diameter: – 2.85mm

Color Tested: Bright green

Date Tested: 2/29/2016

IMG_2143

OBSERVATIONS

Ease of use:  Extremely printable with excellent adhesion.

Appearance:  The green filament was vibrant with a smooth texture. Prints yielded a slightly “shiny” surface.

Size consistency:  Average, within .1mm within roll.

Color consistency: Great, consistent throughout roll.

IMG_2140

SETTINGS

Print temperature: 210 C (nozzle) / 55C (bed)

Printer Used: Gigabot

Speed: 45 mm/s

Layer Height: 0.3mm

Infill: 30%

Type(s) of print surface used: PRINTnZ

List of test files printed: re:3D’s test files 1, 2, and 3 (logo, vase, airplane gear piece)

 You can watch a video  summarizing our testing:

FINDINGS

Odor: None

Bed adhesion (1: terrible – 5: fabulous!)

  • 5 (only the settings listed above were tested, but the manufacturer’s recommendations seemed to be accurate)

Stringing (1: lots -5: none!)

  • 5 – None!

Shrinkage (1:lots-5: none!)

  • 5-None!

Interlayer adhesion (1:terrible-5:fabulous!)

  • 5- Perfect!
IMG_2154

NOTES:

  • The promise of a more heat resistant PLA is super enticing to the 3D printing community.
    • After testing, the landing gear was exposed to high temperature heat via a hair dryer and showed little warping.
      • Further controlled testing would need to be implemented to investigate this claim, but it does initially appear to be stronger and more heat resistant than traditional PLA.
  • NOTE: this filament was tested 4 months after receipt, however, for many users a 4 month shelf life is necessary.
    • Testing fresh filament is expected to yield similar or even better results.
  • Filament size consistency was about on par with most filament.
  • No delamination or curling was observed.
  • All testing was conducted at the midpoint of the temperature and speed range that the manufacture provided. It’s likely that the outcome would have been even better had the ranges had been explored in more detail.
  • The unboxing experience was well done and the recommendation sheet was highly professional.
  • We appreciated the Made in America reference, and date stamp of quality control on the box & insert.
  • Manufacturer recommended settings were easily referenced on the enclosed documentation.

RECCOMENDATIONS:

  • This filament is extremely impressive and more than exceeded it’s claims.
  • Upon review, we would highly recommend that this filament be submitted to ASTM testing by evaluating coupons at multiple temperature and infill settings.

Want to chat? Join our forum where we have initiated a thread about our experience!

https://re3d.zendesk.com/hc/en-us/community/posts/205198503-TESTING3D-FUEL-APLA

~Happy Printing!

Samantha snabes

Blog Post Author

re:3D & SXSW 2016!

It’s almost here!  That time of year where Austin embraces global creatives during the two week whirlwind we call SXSW.  We love being so close to the action and can’t wait to see you out and about. If you’re in the area, please stop by any of the events below to say hi!

SXSW Create

  • Dates/times: March 11-13th, 11am-6pm
  • Location: Palmer Events Center
  • Cost: Free!!
  • Website: SX Create, They also have a  SX Create Facebook event as a handy way to share the event.
  • Description: Exciting hands-on pavilion as well as a number of wonderful STEM sessions. Gigabot Generation 3.0 and OpenGb will be printing live for onlookers while the re:3D team gives high-fives.
  •  

News & Schmooze: A SXSW Media Mixer for Startups and Investors

  • Dates/times: March 11, 5:30pm
  • Location: Capital Factory
  • Description: We’re bringing Gigabot to print live at this invite only event hosted by our friends at Own Local! The re:3D gang will be out in full force while Jeric presents our mission and product!

Capital Factory - “Austin Goes Global” Pitch

  • Dates/times: March 11, 3-5pm
  • Location: The Hilton Startup Village
  • Website: http://schedule.sxsw.com/2016/events/event_PP58415
  • Description: Capital Factory will spotlight several startup and early stage companies already having big impact across borders, and several more on the threshold pondering what to do next…where to go…how to do it?  In this conversation Katy will share re:3D’s reach.

IEEE Tech for Humanity Official SXSW Party 2016 

  • Dates/times: March 13th, 8-10 pm
  • Location- The Driskill
  • Website: http://www.cvent.com/events/ieee-tech-for-humanity-official-sxsw-party-2016/event-summary-fcfd9489c2a54a739252ae5356e427ce.aspx
  • Description-Party like an engineer with IEEE and world-renowned technologists & body computing brainiacs! Join us at The Driskill with Gigabot and the re:3D team to let loose with a few drinks at the open bar and enjoy great music!

SXSW Hardware House - Hardware on Kickstarter

  • Dates/times: March 14, 9:30-10:30am
  • Location: Courtyard Marriot
  • Website: http://schedule.sxsw.com/2016/events/event_PP58037
  • Description: The exhilaration of the pitch isn’t just for Venture Capitalists anymore! Consumers, geeks and fans are tuning in each week for shows like Shark Tank (and others). How do inventors take a great idea to the airwaves and stay on task to become a great company? What are the pros and cons? Why are so many people watching and how do you capitalize on it? In this session Katy will explore how hardware innovation and entrepreneurship is being showcased and celebrated on prime time and how to make the most of it if you decide to go on the air.

Hubs/RE:3D / Draught House Pub 3D Printing Meetup

  • Dates/Times: March 14th 12-2pm
  • Location: The Draught House Pub
  • Description: Come meet Hubs, re:3D communities and other 3D printing enthusiasts in a laid back environment on March 14th! This is a great opportunity to share your love of 3D Printing and see 3D Printers live. Feel free to bring your best prints and ideas!
  • Want more? After March 14th Gigabot and the team are super flexible if you’d like to request their presence:)
  • Email: info@re3d.org

Samantha snabes

Blog Post Author

Free 3D Printable of the Week: iPhone 6 Plus VR Headset

Last Month we had the honor of seeing @MikeBattaglia featured in 3DPrinting Industry! Below is a re-post of the content by Michael Molitch-Hou.

~FRI, AUGUST 14, 2015 · FREE 3D PRINTABLE OF THE WEEK, VR

Many Google Cardboard headsets, and variations thereof, just don’t quite fit iPhones properly. And they certainly don’t fit the new iPhone 6 Plus. So, unless you’re planning on shelling out for a complete 3D scanner/VR system from Occipital, re:3D, the makers of the large format Gigabot 3D printer, has designed a 3D printable headset.

free-3D-printable-VR-headset

re:3D designer Mike Battaglia instructs you to, “Take your lenses and magnets from Google cardboard and port them over to this way sexier headset! Print with a raft, no support.” So, what are you waiting for?

~Michael Molitch-Hou

About the Author: Michael Molitch-Hou is Editor-In Chief of 3D Printing Industry and the founder of The Reality™ Institute, a service institute dedicated to determining what’s real and what’s not so that you don’t have to. He is a graduate of the MFA Critical Studies & Writing Program at CalArts, and a firm advocate of world peace. Michael currently resides in San Pedro with his magical wife, Danielle.

Mike Battaglia

Blog Post Author

@mikebattaglia

How I 3D Printed RWBY’s Crescent Rose

For a long time, my best friend Mason has been bugging me to watch Rooster Teeth’s animated show RWBY. Don’t get me wrong, I love anime, but I was already watching too many shows, and kept putting it off. Then, one day, re:3D’s cosplay enthusiast Rebecca asked if there was some way we could print the Crescent Rose (the instantly recognizable, 6ft tall scythe from RWBY). I immediately said yes, which made me finally binge-watch volumes 1 and 2 of RWBY on Netflix. Much to Mason’s delight, I loved it! I was super excited to make the scythe, not just because of my inner fangirl, but for the creative challenge of creating a 6 foot tall 3 foot wide scythe!
Rebecca and I debated for many hours about how to go about the design for the scythe. As you all might know, the Crescent Rose has the ability to transform into a more compact gun. We discussed the viability of this option ,and ultimately decided that because of the plastic we would be using and the laws of physics, that we should pursue making the best possible scythe-version of the Crescent Rose, and not worry about it transforming.

So, I threw myself into research. I spent many hours pausing the show and sketching, as well as staring at various other interpretations of the scythe on google images. I finally decided on a plan of action, and started modeling the scythe in Onshape, a beta CAD software.

When using a 3d printer, it’s important to keep in mind how your piece is going to be printed. 3D printers start to print from a base layer up, and use supports for overhanging parts. Therefore, I modeled most of the scythe to be easily printed from a flat bottom. Although I could have modeled the piece completely true to the show, I gave up some minor design features so that my prints would be faster and use as little supports as needed. The Gigabot, because of its large print size of 8 cubic feet, allowed me to make the individual pieces much larger and easily create a life sized model of the scythe.

I made the model into 11 different pieces that could be assembled after they were pulled off the printer. I then printed these pieces using PLA on a Gigabot. I used different infills and layers for different pieces, 2-3 layers depending on how much strength I was going to need from that piece and ranged 5-20% infill depending on if I need the piece to be light or not. I usually heat the plastic at around 195-200 degrees Fahrenheit.

When assembling plastic pieces, together keep in mind in order in which you want to paint your piece, and the different bond strength of the glues or tapes you are using. For the Crescent Rose, I mainly used just basic Gorilla Glue super glue. For more stress intensive pieces, I used Gorilla Glue epoxy and clear caulk to give joints a more uniform look.  

After we had finished printing all the pieces, the next step was to remove all the support material. Then, I sanded down and fixed the smaller print errors such as place where there is a slight over-extrusion on corners or small print-shifts. Finally, I started painting! A timelapse of the process is available below.

I used a basic white primer spray paint that sticks to plastic. This created a good base layer on the models that I could paint other layers of spray paints and acrylic on top of. For the majority of the scythe, I used red and chrome spray paints and then used black and red acrylics and a paint brush to finish detailing.

My Crescent Rose actually ended up being a little too big, finishing at 6’10” tall and 4’4” wide. I had the outstanding luck to get to bring my scythe to the Rooster Teeth offices and, who should happen to walk by but the voice of Ruby, the very character who wields the Crescent Rose– Lindsey Jones!

Everything was not all roses and sunshine though. I had some large problems throughout the course of making this scythe. Some pieces ended up being more fragile than I would have wanted, and broke a few times. The overall size and shape of the scythe creates its own unique problem. Even though the material is fairly lightweight, the scythe acts as a natural lever where the fulcrum is where the staff meets the blade, causing a large amount of pressure and tension right at the joint. My solution to this problem was more gorilla glue and wooden and metal rods drilled into the plastic and hammered through to help support the weight.

Another huge problem that occurred during the print of one of the pieces completely failed on us. The head of the Gigabot extruder got clogged 48 hours into the 55 hour print. Fortunately, when a print fails, the print usually has a flat layer at the point of failure. I was able to measure the print, and edit my model accordingly so, so I could print only what was missing. The end result looks just like a filament swap mid-print. I credit the ease of this fix to the great usability of OnShape.

Finally, the last and probably worst problem I ran into was the Texas Summer Sun… This is a problem that is unique to people in the south who use 3D printers. Even though the plastic melts at roughly 200 degrees fahrenheit, your print will warp if left in your car or your backyard too long. This happened on the largest piece of the scythe and caused my really nice print fix to be extremely noticeable. I had to reheat my piece and to try and warp it back to a usable condition– with limited success. I decided at the end that the condition of the piece after I re-warped it was good enough to merit not reprinting 55 hours worth of plastic.

In order to save you some work modeling, I posted the files on Onshape so that you can print RWBY’s Crescent Rose too!

I’m unveiling the files at RTX at the re:3D booth prior to our Panel today (Aug 8th) on 3D printing & cosplay. You can check out the panel at 1pm at the JW Marriott, Room 303.

You can find me on twitter @jacobelehmann to discuss the process in more detail.

Below are the sources I used to help me create my model.

  • http://i.ytimg.com/vi/rST5VxiZ_gE/maxresdefault.jpg
  • http://goo.gl/9XzVMq
  • http://goo.gl/SsO63J
  • https://en.wikipedia.org/wiki/RWBY
  • http://goo.gl/r6x12t

Thanks for reading!

Jacob e lehmann

Blog Post Author

3D Printing Musical Instruments: The Ukulele

Pranathi Peri is developing a set of 3D printed, playable musical instruments for her summer internship. In her own words, she describes her design process:

Have you ever wanted to 3D print your own ukulele? Well now uke can! For the second instrument of my 3D printing internship, I decided to design and print a ukulele. After all, who didn’t trawl the internet looking for the best acoustic guitars under 300, and then end up with a ukele anyway because it was cheaper? They have such a charming aesthetic, and it’s that student living nostalgia that I wanted to try and tap back into. It also dramatically simplifies the process of choosing an acoustic guitar for your child, you can just print one instead now. Although, we have to admit, perhaps it won’t have the same charm.

The history of the good ol’ uke goes way back. During the late 1800s they were first introduced as instruments in Hawaii, where its name literally meant “jumping flea.” Well-known songs like I’m Yours, by Jason Mraz, Riptide, by Vance Joy, and Imagine, by John Lennon have familiar ukulele riffs which have contributed to the popularization of the instrument, yet these bands use the ukulele in maybe one to two of their songs, and then proceed to abandon it.

I know what you’re thinking; why would I want to design such an uncommonly played instrument?

Although the ukulele is not a widely sought-after instrument like the electric guitar, and piano, I decided to design and print it because it combines the aspects of many popular, commercialized instruments. For example, the ukulele is compact, like the violin, but is not as susceptible to external factors that may may warp the acoustics. It retains the same resonance as the acoustic guitar like the Yamaha FGX800c, but within a smaller body. It has strings that can be tuned, just like a piano, but rather than 236 strings, each with their own unique thickness and reverberation, it has 4 which are tuned to C, E, G, and A . For these reasons, and many more, I figured that a ukulele would be relatively easy to design and print, while still containing key aspects of various other basic instruments.

During the process of actually printing the ukulele, I learned many things about designing the instrument itself. One of which being, SAVE YOUR SOLIDWORKS MODELS EVERY 5 MINUTES. There is nothing more traumatic than losing a solidworks file which you had just finished after 1 solid week of work.

However, the portion of this project in which my learning fared most, was the printing, and post-processing of the instrument. Failed prints were rather frequent in the first stages of printing. During our first attempt at printing the body, we decided to orient the body to stand at a 45 degree angle, in order to print it all in one piece. Little did I know that what would be printed would look something like a bird’s nest. Because of some issues with the fan near hot-end of the bot, the print shifted, and proceeded to print midair. Although printing the body in one piece was possible, we decided to go the easier route of printing it in two separate, flat pieces.

Fast-forwarding to when the ukulele was half-assembled, I stumbled upon some valuable learning experiences. In case you didn’t already know this, GORILLA GLUE SUPER GLUE STICKS VERY WELL. Always use gloves when handling super glue. (I may or may not have learned that the hard way.)

The fretboard took several prints, but I had already expected this when I was designing the ukulele. In order to get the placement, and height of the frets just right, it would require some trial and error. This is why I made the neck and frets separate pieces in my model. The first fretboard I printed was way too thick, causing the strings to collide with the higher-up frets. This ended up producing not-so-pleasant vibrations. The fret placement was also a little bit off, causing all the notes to be disturbingly sharp.

The second fretboard was more successful, not only because the black filament made the ukulele look more sassy, but because the fretboard was skinnier, (eliminating the unpleasant vibrations) the frets were taller, (facilitating the playability) and the fret placement was shifted, but wasn’t shifted down quite far enough.

Which leads us to the third fretboard–perfection. That wrapped up project uke once and for all–or so I thought.

My crowning achievement was playing a funky ukuleke riff for the first time. Then I did something very, very, VERY stupid. I left the 100% completed ukulele in the car for no more than 45 minutes, and by the time I came back, the ukulele had completely warped. Because the body of the ukulele was so thin, it had actually folded in on itself, and left the bridge, shattered.

warpeduke1

This didn’t upset me though; I thought of it as a way to make improvements to ukulele 2.0, that I had missed in the original. For example, I could combine the frets and neck, to eliminate the number of parts I had to super-glue together. I also had the chance to make an awesome video for the re:3D What NOT to do 101 When 3D Printing You Tube Channel!

However, after exploring this option, I realized with support material the model is still best split with the fretboard separate so I re-printed it just in time for an interview!

IMG_0082

Over-all, printing this ukulele definitely gave me more insight into the musical world. Not only did it open up a new door of opportunity for gigabot, but it also taught me the process of trial and error, and that things rarely ever work out the first time. Another interesting thing I learned about the acoustics of the instrument, was that the PLA filament body actually had a stronger, and more vibrant resonance, as opposed to the wooden ukulele.

I hope to use this new knowledge to lead me into my next project–an electric guitar!

References:

Pranathi Peri

Blog Post Author

@PranathiPeri

SXSW Innovation Award/ Kickstarter Announcement

We’re incredibly flattered to be nominated for SXSW Innovation Award! The other nominees are amazing and we can’t wait to meet them! Check out the clip below to meet the team below and feel free to show your support by using the following social media mentions : @re_3D #openGB #InnovationAwards. Also, check back for a not-so -surprise Kickstarter campaign for OpenGB during SXSW where we will be seeking your feedback on what you want in Gigabot going forward!!

Forever grateful:

 @