Engineering Updates – Thermocouples, Hot Ends, and 3D Printing Research

This is called the “Engineering” Update, but it’s really a reflection of all the work going on at re:3D – engineering, R&D, customer service, operations and everyone else included. As our company ethos begins, “We are a team…”, and that team has been working hard to solve problems for our customers, improve the performance of our products and contribute to the body of knowledge within our additive manufacturing industry. Here are a few snapshots of what’s been happening at re:3D since our last post.

The Gigabot FFF (Filament) Platform

MCU Thermocouple Errors

For the past couple of years, an intermittent problem would pop up on the Gigabot 4 (and GigabotX 2) printers related to the thermocouples. Sometimes the printer would throw an “MCU shutdown: Thermocouple reader error” fault during the bootup cycle (Figure 1). There were some arcane incantations that could be performed to sometimes clear the fault in any given instance, but ultimately, better grounding of the extruder seemed to solve the problem. Recently the error started showing up again, potentially delaying product shipments. So the engineering team put intense focus on investigating the cause of the error.

Figure 1: “MCU Shutdown” error thrown by Klipper due to a fault registered on the MAX31856 thermocouple chip.

re:3D’s uses the Archimajor 3D printer motherboard from US manufacturer UltiMachine (South Pittsburg, Tennessee). The Archim boards use a MAX31856 chip from Maxim Integrated to amplify and digitize the input signals from the thermocouples, and it was this chip that was throwing the pesky error. Buried in an obscure Maxim FAQ was a cryptic comment about shunting the negative lead of the thermocouple input to ground to improve performance. The engineering team tried it out (Figure 2), and this has reliably prevented the error from occurring. re:3D now has a field-fix available for service technicians to use when encountering this issue on customer machines and is also working with UltiMachine to incorporate this feature into future versions of the motherboard.

Figure 2: Shunt resistors installed on the thermocouple inputs.

Terabot Hot End Conversion

re:3D has a long history of designing and testing extruders and hot ends, always looking for ways to push more plastic to print faster. (OG members of the re:3D community might remember the early “Mondo” hot end prototype.) To keep up with its larger build volume (915 x 915 x 1000mm), re:3D’s Terabot filament printers have been shipping with “20 Series” hot ends, which have a larger heater block to increase the residence time of the plastic within the heat zone and speed the melting process (Figure 3). However, testing has shown that with the proper slicer and configuration settings, re:3D’s standard hot ends perform equally well and are less prone to occasional inconsistent flow or leaking at the nozzle.

To improve overall performance and reliability, Terabots will now be supplied with standard hot ends. This is a minor engineering change, and the Customer Service team has developed a simple and easy-to-install upgrade kit that requires no major modifications to existing Terabot platforms. The Customer Service team is looking for initial Beta Testers for the Terabot hot end conversion kits. If you are interested, you can read more about re:3D’s Beta Testing Program below.

Figure 3: Comparison of 20 Series hot ends (a) and standard hot ends (b) installed on a Terabot.

The GigabotX FGF (Pellet) Platform

There has been progress on both GBX part cooling and GBX bed mesh compensation, but the Gigaboss leading those efforts is busy finishing his master’s thesis, so you’ll have to hold off until next time for a written update. Do worry – it’ll be worth the wait.

Software Improvements

re:Bugger

This spring semester, re:3D has been pleased to host Yasseen Hilal, who is studying computer science at the University of Texas, as a software engineering intern. Yasseen took on the task of developing a printer debugging tool for use in the field. The re:Bugger (Figure 4) simply plugs into a Gigabot 4, Terabot 4 or GigabotX 2 via a network cable, then through a simple and intuitive interface reads the available log files to detect errors and provide possible solutions. Log files and performance graphs can be easily exported from the printer onto a USB drive for later review, and the re:Bugger also allows users to flash the latest printer firmware onto the Raspberry Pi without needing network access. This all helps reduce printer downtime.

Yasseen did a great job on his project, and the re:3D team wishes him all the best on his future endeavours.

Figure 4: The re:Bugger printer debugging tool.

Bed Mesh Compensation

There was recent feedback on accuracy and standard operation being manually intensive. Updates have since been made on the mesh compensation workflow which will now carry out a startup procedure to automatically calibrate the Z offset, tram the Z lead screws, and adaptively probe only the area where the part is printing.

This new workflow is meant to keep manual efforts to a minimum during calibration. This procedure is written into Klipper as a comprehensive macro and can be called at the beginning of a print using a single line of Gcode in the slicer.
This master macro approach makes usage simple for the end user while also ensuring accurate and standardized results. There are also optional advanced parameters for users who want to fine tune and experiment with values.

  • Procedures:
  • Prime the extruder
  • Clean the nozzle for accurate offset calibration and probing
  • Model calibration
  • Z offset Calibration
  • Z tilt calibration
  • Adaptive probing

We are actively seeking feedback through our beta testing program, and encourage new testers to contribute their insights to further refine and improve this workflow. You can learn more about re:3D’s Beat Tester Program below.

HELM

Work also continues on HELM, the printer fleet management software under development at re:3D. There have been some minor changes under the hood since the last update, but the most obvious improvement is the user interface – it’s cleaner and easier for casual operators to use (Figure 5). This is an open-source project, and you can try the application yourself, report problems, contribute, or follow progress here: Helm on GitHub.

Figure 5: Comparison of the HELM GUIs - older version on top, updated version on bottom.

Beta Testing Programs

As an open source company, re:3D celebrates collaboration with our community of users, customers and vendors. Historically, select new changes or features were offered to existing customers for ‘beta testing’ as part of re:3D’s internal engineering process. The Beta Testing Program has since evolved and become more formalized with contributions from engineering, customer service and sales and marketing. An application form is now available on the re:3D website here where you can apply to be a beta tester through the following steps:

1. Choose Your Desired Beta Product/Software

Read a short summary of available beta products with how it will improve the Gigabot user experience. Ideally, applicants will have non-modified printers so that the performance improvements of the beta products can be accurately assessed.

2. Sign Up

Fill out a Google Form to express your interest in beta testing the selected product for which you’d like to be considered.

3. Confirm Acceptance

A notification email will be sent to confirm your selection as a beta tester. This will include a beta tester release agreement, a defined testing period, steps on how to submit feedback, and a link to the Forum for updates on these products. Invoicing and delivery information will also be requested, then the beta products will be shipped.

4. Begin Testing

An Instructional Guide with detailed installation instructions and troubleshooting tips will be provided with the beta products.

A Google Form will be sent to beta testers no less than monthly for each product to solicit feedback and recommendations.

5. Be a proud GigaTester!

For now, there are two beta test products available for consideration:

  • Bed Mesh Compensation (Gigabot 4 only)
  • Terabot Hot End Conversion (Terabot family)

Watch for these additional beta testing opportunities in the coming weeks:

  • Bed Mesh Compensation (GigabotX 2 only)
  • Feedstock Crammer (GigabotX family)
  • 1.75mm Filament Conversion Kit (Gigabot / Terabot family)
  • GBX Part Cooling (GigabotX family)

R&D Programs

Though there has been recent turmoil and uncertainty in the news about federal research grants, re:3D continues to support R&D contracts for the Department of Defense (DOD), NASA, the Department of Energy (DOE) and the National Science Foundation (NSF). Some of those projects went along on re:3D’s recent trip to Hawai’i, but the others have been making progress too!

ReCreateIt (NSF)

ReCreateIt is a multinational initiative led by re:3D, with a goal to transform waste plastic into valuable products through 3D-printing and community-led design. To achieve this mission, re:3D is collaborating with the Austin Habitat for Humanity ReStore, where a Gigalab was designed and delivered in December 2024. Since its delivery, the Gigalab has been outfitted with a granulator, pellet/flake dryer, a GBX2 XLT, all necessary mechanical and electrical tools, and personal protective equipment. The long-term goals of the ReCreateIt Gigalab is to recycle and reuse over 10,000 lbs of local plastic waste over its lifetime while being a net-zero energy manufacturing lab.

Compared to other Gigalabs, the ReCreateIt Gigalab will feature various additional sensors that monitor temperature, humidity, emissions, particulate matter, and energy usage. The sensors will allow the team to construct a comprehensive model of the Gigalab system and quantitatively assess the environmental impact of the Gigalab and the recycling efforts. This data may also provide the re:3D team with insights that may spur redesigns and improvements of future Gigalabs towards more energy-efficient and sustainable systems.

To support daily operations, three Gigalab associates have joined the team to collect and sort incoming waste plastics, and to operate the machinery that processes and prints with the recycled materials. The re:3D team is actively mentoring the associates to enable them to operate and troubleshoot the Gigalab equipment safely and autonomously (Figure 6).

Figure 6: Gigalab associates celebrating the first print of the ReCreateIt Gigalab!

There have also been advancements in 3D printing with recycled polypropylene (PP) — the second most used commodity plastic in the world. In fact, the vases shown in Figure 7 below are printed from 100% recycled PP, which were originally storage bins collected at the ReStore that were destined for the landfill. While there still are challenges to scale up into furniture pieces such as end tables or stools, achieving successful and functional parts using 100% recycled material, without any additives or blending agents, is a significant milestone in sustainable manufacturing.

Figure 7: Vases printed from 100% recycled polypropylene (PP).

To showcase the progress on the project to the public and local media, the ReStore and re:3D teams co-hosted a soft opening at the ReStore on April 19. Well over a hundred curious customers stopped by to take a look at a large array of printed parts made from recycled materials. Attendees were invited to share their ideas for future products, offer feedback on existing prints, and learn more about the environmental and social impact of the initiative. The majority of visitors also expressed major interest in the behind-the-scenes of the project and participated in tours of the Gigalab, where they got a first hand look at the recycling and manufacturing process including the GBX2 in motion.

Figure 8: ReCreateIt Soft Opening at the AHFH ReStore.

If you’re in the Austin area, stop by the ReStore at 500 W. Ben White Blvd where you can check out the prints in person, buy a piece printed from recycled waste and directly participate in the circular economy yourself.

“Bigger, Better, Faster” FGF (DOD/US Army)

The large FGF printer being developed under a US Army SBIR R&D award has come a long way since the last update. The frame is complete, and the linear motion components – including ball screw actuators and servo motors – are installed and commissioned (Figure 9(a&b)). Another major change from re:3D’s traditional build style is the use of a separate HMI (human-machine interface) and control pedestal (Figure 9(a&c)), rather than having an electrical box and touchscreen interface mounted directly to the printer’s frame. Not only does this change allow for the room needed for added servo motor controllers and power supplies, it makes the electrical and control components more accessible for service. Having a full computer built into the HMI pedestal will allow users to access third-party software when necessary for servo motor diagnostics, along with providing opportunities for performing CAD and slicing tasks at the same workstation as the printer operation, without requiring network access – which is not available or desirable in some situations.

Figure 9: Printer frame with HMI/control pedestal (a); extruder mounted on z-axis actuator with temporary side hopper (b); inside view of HMI/control pedestal during initial wiring (c).

After commissioning and initial tuning, the printer’s extruder was finally tested. This is a novel and exciting new design from Dr. David Kazmer’s group at the University of Massachusetts Lowell, who are collaborating with re:3D on this effort. After a few hiccups caused PLA to thermally degrade inside the barrel, DynaPurge became the first material extruded through this system. As shown in Figure 10, the first extrusion looks like – well, you know. But it’s a first extrusion nonetheless, and the team is excited for the rapid progress of this project.

Figure 10: First extrusion! No judgments, please.

Additively Manufactured Thermal Protection Systems (NASA)

re:3D’s R&D team designed and built a 5-axis printer to deposit ablative foam materials onto non-planar surfaces. This has been done before using robotic arms, but this is a unique design based on a gantry system, intended to investigate the economy of a different kinematic approach to conformal printing. The frame and x, y and z axes systems are similar to re:3D’s Terabot printer. But to add the extra degrees of freedom, the extruder (a ViscoTec volumetric deposition pump) rotates about the Y-axis, and the whole bridge rail rotates about the X-axis (Figure 11(a&b)).

Figure 11: AMTPS printer axes definitions (a) and motor locations (b).

Rather than adapt the Archimajor motherboard for 5-axis control, re:3D collaborated with the Siemens team at the Charlotte Advanced Technology Collaboration Hub (CATCH) to implement an advanced industrial control system. The CATCH team helped identify appropriate servo motors and control hardware for the printer, and also provided training both at a partner solution provider’s site in Houston and at their own Machine Tools facility in Elk Grove Village, Illinois.

For the final touches and commissioning of the printer, the system was sent to Bobby Cole and his team at Think-PLC in Lexington, North Carolina. Think-PLC is a Siemens Solution Partner, and Bobby is highly regarded in the world of industrial controls and automation for his work with machine builders and manufacturers, and re:3D’s experience bears this out. Think-PLC identified and corrected some deficiencies in the AMTPS printer after they received it, then worked to understand the system requirements and implement control kinematics to achieve optimal performance within the limitations of the printer’s mechanical design. It has been great working with them and watching the printer come to life (Figure 12). The AMTPS printer will soon be returning to re:3D in Austin for the installation of the deposition system and the beginning of print testing.

Figure 12: AMTPS printer demonstrating a range of kinematic motion at Think-PLC’s facility in North Carolina. (Credit: Think-PLC)

Another collaborator on this project is Addiguru, a software company that specializes in in-situ monitoring technologies for additive manufacturing processes. While re:3D is designing a mounting system for multiple cameras to monitor the deposition of the TPS foam onto the substrate (Figure 13), Addiguru is developing the software to measure the width of the extrusion and flag excessive variances in volumetric deposition in real time. Although it won’t be implemented within the scope of this effort, future work on this project could incorporate Addiguru’s software to provide feedback into the Siemens system for closed-loop control of the deposition process.

Figure 13: Three-camera mount system providing full video coverage of the ViscoTek deposition nozzle.

Water Bottle Granulation (DOE)

The collaboration with Oak Ridge National Laboratory (ORNL) continues with a focus on separating the recycled PET (rPET) flake from granulated water bottles out of the flake/water slurry coming from the granulator. ORNL is procuring a hydrocyclone for the separation step. Hydrocyclones produce opposing vortices within a chamber which force large, heavy particles out through a reject port and lift lighter fines and liquid out through the overflow. The physics of hydrocyclones is quite interesting and watching YouTube videos about them can easily burn a couple of hours from your day.

Once the rPET flake is separated from the water it must be dried, and re:3D has been studying the efficacy of desiccant drying on wet flake. A sample of granulated water bottles was soaked in water overnight, then dried in an industrial recirculating desiccant dryer at 70°C. The moisture content of the flake was measured using gravimetric analysis (i.e., loss on drying) at multiple steps throughout the process. As shown in Figure 14, as little as three hours is required to dry the flake back to its original, equilibrium condition, and an additional three hours may be sufficient to dry the flake sufficiently for immediate extrusion processing (below 200 PPM). These results are consistent with re:3D’s previous tests on “Drying rPET Water Bottle Flake”.

Figure 14: rPET flake moisture content measured throughout a water soaking and drying process.

It’s a bit of a chore to collect, edit and format the information and photos telling re:3D’s behind-the-scenes technical stories, but it’s also incredibly fulfilling to be able to share the good work going on here and appreciate the cool factor in what we get to do every day. All in all, it’s worth the time.

Thanks for reading along, and as always… Happy Printing!

Patrick, Chris, Mitchell, Taylor

Blog Post Authors

A Year of #FreePrintFriday Open-source Designs by re:3D

When we set up the Gigalab in Bayamón, Puerto Rico, alongside our neighbors and partners at Engine-4 Foundation, we weren’t just building a container lab. We were planting a seed, an idea that digital fabrication should be for everyone, and that creative tools should serve the people around us.

So we started small. One design, every Friday. Free. Useful. Sometimes funny. Sometimes experimental. Always open.

What started as a small weekly gesture quickly grew into something bigger, a rolling catalog of open-source designs, community responses, and whimsical one-offs that anyone can download, print, and build on. While we’ll be highlighting a few of our favorite moments here, there are plenty more where these came from. So if something catches your eye, or if you’re just curious, we invite you to dive into the rest of our #FreePrintFriday designs on Thingiverse and Cults3D.

Big Bots, Big Ideas

Interior of 3D printing Gigalab

Inside the Gigalab, we’ve also been putting our large-format GigabotX printers to work. Many of our favorite designs showcase how recycled plastic and local fabrication can do so much more:

3D printed stool
Printed in one piece, strong enough to sit on, weird enough to get compliments.
3D printed hexagonal ceiling lamp shade
Dodecahedron inspired light fixture, sharp and stylish for any space.
3D printed cable wrap with red cable wrapped around
A functional form made to tidy up heavy-duty cords on the go.
3D printed kite flying in the sky

Our 3D printable kite experiment. Still very much a work in progress, but easily one of the most fun things we’ve ever designed. Building something that’s meant to flex, fly, and occasionally crash (gracefully) has pushed us to think differently about material use, weight, and structure—all while showcasing the beauty of recycled 3D printing.

Collaborations with Our Local Community

Working alongside our neighbors at Engine-4 Foundation has been core to Gigalab’s mission. Many of the ideas we’ve printed came directly from conversations at Engine-4 with Co-Founder, Luis Torres, whether it was a passing comment, a workshop brainstorm, or someone pointing at a problem and asking, “Can we 3D print a fix for that?”

Some standout collabs include:

3D printed hydroponic rocket shaped container
A modular hydroponic tower, designed to help promote urban agriculture in small spaces, printed with reclaimed plastic.
3D printed weed fork picker
handy garden picker, born out of a brainstorm about accessible harvesting tools for local growers using formbot, the bot doesn't do everything (yet).
3D printed drone adapter holding a net with a package

The drone care package hook, a collaboration with both Engine-4 Foundation and the Municipio of Bayamón, used in earthquake simulations to deliver supplies via agricultural drones.

More on the simulation from Puerto Rican local news:
Primera HoraTelemundo

These kinds of projects remind us that when we design with our community, we design with purpose.

Culture, Celebrated in Layers

Some of my proudest open-source designs that connect with my Puertorrican identity:

3D printed frog
A tiny homage to Puerto Rico’s most iconic Coquí frog.
3D printed sculptures of three kings
A Low Poly Three Kings Ornament, blending modern design with beloved holiday tradition.
3D printed model of statue Monumento al Jibaro Puertorriqueño

Our photogrammetry model of the Monumento al Jíbaro Puertorriqueño, scanned, modeled, and shared to honor Puerto Rican heritage in a tangible way.

These designs always spark conversation, everything from an “aw” to an “I want one” to someone recognizing their own story in it, saying, “I used to drive past that monument every day. The view was breathtaking.”

Designed for People

Girl with her 3D printed red prosthetic leg cover

The most personal of our projects came through the Rotationplasty Prosthetic leg shell designs.

It started with a visit. Wilfredo Rodriguez and his daughter Emily came to Engine-4 with a bold question: could we design something that didn’t just cover for her unique rotationplasty prosthetic leg, but make it look and feel amazing? Something Emily could wear with confidence, something that felt like hers.

We scanned her leg using photogrammetry, modeled around it with Rhino and Fusion 360, and started prototyping with rPETG, Nylon, and TPU. Eventually, we found the right balance, lightweight, flexible, and durable enough for everyday life. The final shell was finished with automotive-grade paint for a smooth, protective finish.

But the story didn’t stop there.

Girls with their 3D printed red and white prosthetic cover

Left is the back of Emily’s cover, middle is daniels cover and right is Emely and Anya
Emily’s friends Anya and Daniel, all the way in Boston, got scanned too. We designed and printed their custom shells right here at the Gigalab in Puerto Rico, and sent them north, each one uniquely shaped and styled for them.
This wasn’t just about aesthetics. It was about saying, with a smile, “I want that leg”

Creative Chaos at Haystack

group of people meeting for 3D printing event

Located on the rugged coast of Deer Isle, Maine, Haystack Mountain School of Craft is a legendary space where artists, designers, and thinkers come together to push creative boundaries. We were lucky enough to be invited to spend a week there with the GigabotX 2 XLT for Haystack Labs, joining a wild mix of tinkerers and craftspeople for a creative tech residency.

Designed by Shelby Doyle and printed on GBX2 XLT

At Haystack, we experimented with University of Maine’s wood pulp PLA feedstock, tested out sculptural forms, tricky overhangs, and parametric designs that challenged our printers and our imaginations. We had the pleasure of learning with Shelby Doyle, AIA, an Associate Professor of Architecture at Iowa State University and co-founder of the ISU Computation & Construction Lab. Her expertise in digital fabrication and design-build education brought valuable insights to our explorations, pushing the boundaries of what we could achieve with recycled materials and large-format 3D printing.

3D printed coffee mug caddy with cups

But one of our favorite prints? A five-mug coffee caddy we designed because we were too lazy to take our mugs back to the kitchen one by one. Turns out the kitchen staff liked it too as it’s a recurring problem!

table with 3D printed designs

Functional Tools, Fun Fixes

A lot of our most downloaded open-source designs are little things that solve specific, everyday problems stuff that just makes life smoother:

macbook pro charger with 3D printed cable organizer case
MacBook 140w Flexi Cable Wrap Case, for untangled, compact, backpack storage
orange flexible 3D printed phone stand
Inspired by the question: "What if we made a one-piece phone stand durable enough to live in your wallet?"
3D printed orange cable tie holding cables

Inspired by SSgt Hart during our Gigalab demo at Cannon Air Force Base, she needed a better way to manage cables, had a great idea, sketch it out for us and we helped turn that need into a print anyone can use!

Gray 3D printed whistle with a hole and string in the middle

These weren’t built for retail. They were built for daily use, most came to life in under an hour, sparked by someone asking, “Hey, can you print something for this?” or even just a playful thought like, “What if we 3D print a whistle?”

A Year of Creative Response

Over the past year, we’ve shared over 50 open-source designs. Some are silly. Some are super niche. Some are actually really useful. Most are a little of all three.

What they all have in common is this: they came from the community, and they’re going back to the community. Free. Open. Ready to print.

Whether it’s a bookmark, a birdhouse, or a prosthetic leg cover, every design came from a simple idea: listen, learn, make, and share.

We believe 3D printing isn’t just a trend. It’s a tool for local problem solving, education, expression, and play. That’s why we do #FreePrintFriday .

So what’s next?

Gif image of GigabotX 3D printing a chair

We’ve still got a backlog of unreleased prints. Expect more cultural remixes, more functional tools, more weird stuff. Maybe even more community collabs!

Got an idea? Shere it with us by filling out our #FreePrintFriday form, we’d love to hear it!

Here’s to another year of printing what matters (and what’s fun). See you Friday and happy printing!

– Michael C. Pujols Vázquez and re:3D team

Michael C. Pujols Vázquez

Blog Post Author

Reimagining Themed Experience Design with Large-Scale 3D Printing: UCF’s Domain Bizarre Project

In the highly competitive realm of themed experience design, standing out requires not only innovative concepts but also the ability to present those concepts in a compelling and tangible way. This was the challenge faced by our project team at the University of Central Florida’s (UCF) Themed Experience Master’s Program. Our project, “Domain Bizarre,” aimed to revolutionize the theme park experience with a queueless land design. Key to our success was the utilization of a large-scale 3D printed massing model, generously provided by re:3D Inc.

The Power of Large-Scale 3D Printing

In themed entertainment design, the devil is in the details. Traditional desktop 3D printers, while useful, often produce models that are too small to effectively convey the full scope and intricacy of a design. This is where re:3D Inc.’s large-scale 3D printing capabilities came into play, allowing us to create a 2ft x 2ft massing model of Domain Bizarre.

Why Printing BIG Matters

The ability to print a large model was crucial for several reasons:

  1. Detailed Realism: Larger models capture finer details and provide a more realistic representation of our design. This level of detail is essential for themed entertainment, where every element contributes to the overall narrative and guest experience.

  2. Comprehensive Visualization: A substantial model offers a more comprehensive view of the project, helping our team and the judges better understand spatial relationships, proportions, and the overall layout of Domain Bizarre.

  3. Impactful Presentations: For our presentation, the large-scale model made a significant impact. It allowed the judges to truly grasp the scale and complexity of our design, enhancing their understanding and engagement.

Domain Bizarre: Concept to Reality

Domain Bizarre is a queueless land designed to be integrated into an existing theme park. Our goal was to create a seamless, immersive environment where guests could explore at their own pace without the constraints of traditional queues. Here’s how the large-scale 3D printed model facilitated this vision:

  1. Design Breakdown: The 2ft x 2ft model allowed us to break down different areas of Domain Bizarre, illustrating how story beats unfolded across the land. We could clearly show where interactive elements, seating areas, and food stalls were ideally located.

  2. Interactive Elements: By printing large, we could place and adjust interactive elements within the model, ensuring they fit seamlessly into the environment and contributed to the overall guest experience.

  3. Optimized Layout: The detailed model helped us optimize the placement of various features, ensuring that every element—from food stalls to seating areas—was strategically placed to enhance the guest experience.

The Role of re:3D Inc.

While UCF’s Themed Experience Master’s Program provided the platform for our project, it was re:3D Inc. that made our vision a reality. Their Gigabot 3D printer allowed us to create a detailed, large-scale massing model that was pivotal to our presentation’s success. The ability to “print HUGE” provided a level of detail and realism that desktop models simply cannot achieve.

Presentation Impact

The impact of our large-scale model on the presentation was profound. Judges were able to see our world in a tangible form, allowing them to fully appreciate the intricacies and thoughtfulness of our design. The model’s size and detail made it easier for them to visualize how Domain Bizarre would function in real life, enhancing the overall effect of our presentation.

Conclusion

The successful presentation of Domain Bizarre demonstrates the critical role that large-scale 3D printing can play in themed experience design. By collaborating with re:3D Inc., our project team was able to create a compelling and detailed massing model that brought our vision to life. This experience underscores the importance of innovative presentation tools in the field of themed entertainment, paving the way for future projects to push the boundaries of creativity and design.

For our team, the journey of Domain Bizarre was not just about presenting a project; it was about pioneering new methods of visual storytelling and spatial design. With the help of re:3D Inc., we showcased how large-scale 3D printing can transform abstract concepts into tangible realities, setting a new standard for themed experience presentations.

Blog Post Author

2023 Gigaprize

Brookwood in Georgetown

And that is a wrap folks! Gigaprize 2023 is in the books, but our winner, Brookwood in Georgetown, is just getting started on their 3D printing journey! Brookwood in Georgetown is excited to use their Gigabot 4 to aid in producing ceramic molds and training for their vocational community that provides meaning work for adults with functional disabilities. Their final products the find their way onto the shelves at their award winning giftshop in Georgetown, TX.

GIGAPRIZE FINALISTS

We had many amazing applicants this year and it was an incredibly tight judging process, with our final 5 contestants (I Want That LegRe-InventaSew-PrintedCentro de Aprendizaje Educarte and Brookwood in Georgetown) being separated by less than a point. A huge thank you goes out to our wonderful judges – Khaalid McMillan, Sabine Berendse, Kameco de los Santos, Sonakshi Senthil, Josh Pridmore, Scott Austin Key, Jason Kessler, Sakshi Shah, Dr. Andrea Santos, Ama Fofie, Erik Hausmann, Lillian Ferrell & Lindsay Shwartz for bringing their expertise and industry experience to our judging process.

AMERICA MAKES

As a bonus, our Partner Organization AmericaMakes, will provide America Makes Education and Workforce development portfolio assets and training to the selected organization, meaning Brookwood in Georgetown will be onboarded into the AMNation! To learn more about America Makes, please visit their website at www.americamakes.us!

2023 re3D 3D Printer Gigaprize Winner BIG

A MESSAGE FROM BIG, 2023 GIGAPRIZE WINNER:

BiG has a vision of an inclusive, empowering world for adults with special needs. This marks a paradigm shift in the way that society typically views these individuals. We provide training and support for our Citizens to succeed in modified job tasks, allowing them to experience the dignity and satisfaction of accomplishing real work. Winning the Gigabot will allow us to dream and create in new and innovative ways for our Citizens to succeed. From making molds for our clay enterprise to creating adaptive tools for our Citizens to participate in our pie making kitchen—the sky is the limit! We are beyond grateful!
Debbie Guinn from BiG

I am so thankful to have been a part of this journey, and cannot wait to see what amazing things Brookwood in Georgetown will do with our Gigabot! I hope that the runner up will continue to follow re:3D and apply for our next Gigaprize!

Ryan Murray

Blog Post Author

How To Make a 3D Printed Concrete Stamp

A section of concrete stamped with the phrase "Macklin Manor. Est 1989"

Pressed into the concrete outside the newly remodeled Holy Trinity Missionary Baptist Church in Youngstown, Ohio is a distinctive embossment, “Macklin Manor, Est: 1989.” The notation was added to honor the church’s long-serving pastor, Reverend Lewis Macklin II, a much-beloved community leader in Youngstown. What isn’t obvious about that marker however, is that the concrete stamp that made it was 3D printed.

Concrete stamping has been around since the 1950s, and the earliest stamps were made of sheet metal or even wood. Modern concrete stamps are made from molded polyurethane and have patterns that can make concrete look like brick, tile, or stone. Custom stamps are traditionally used to add company logos, building numbers, etc., but the lead time to create one is upwards of one to two months. What do you do if you need a concrete stamp and only have a few days before the cement trucks arrive? You call someone with a really big 3D printer, and in Youngstown, for Holy Trinity Church, that person was Pam Szmara.

We recently spoke to Pam Szmara with Pamton 3D Printing about the Macklin Manor project, and she shared this how-to, modified from Formlabs instructions, for how you can make your own custom concrete stamp.

Here's Pamton 3D's advice:

We recently completed a project that required us to design and 3D print a stamp capable of personalizing a concrete stone at Macklin Manor in Youngstown, Ohio. We enjoyed the project and are excited to have the capability to make small or large personalized concrete stamps for our clients’ residential and commercial projects.

So, how do you do it? How can you use additive manufacturing technology to help you personalize or preserve the history of your buildings, projects, or events?

Here’s a quick rundown of the process.

1. Draw your stamp digitally using a vector file format. You can use a software program like Adobe Illustrator or a free program like Inkscape to do this. When you have the design complete, save it as a Scalable Vector Graphic (.SVG) file, which can be imported into a CAD software to make the 3D model. Alternatively, sketch the drawing directly in the CAD software.

– The final design must be mirrored so that the stamp itself is the reverse of what will appear on a stamped surface.
– Use large, widely-spaced lettering and thick details so that the features read well in concrete.

2. Convert the vector design into a 3D model. Using 3D modeling software like Fusion 360, Onshape or Tinkercad, convert your two-dimensional .SVG file from a curve to a mesh. Then, extrude the mesh to make a 3d shape.

3. Add a backing plate. Add a rectangular backing plate to the shape. This will give you a flat, sturdy surface to stand on as you press the design into the concrete. We recommend the design fill up 80% of the rectangle.

"...it will take half a day or more to print your stamp, so crack open a beer and relax."
Pam Szmara

4. Optional: Add a stamp handle. A handle will help you easier position and remove the concrete stamp, however it will make your stamp require support material when you print it, so this is why it’s optional. The handle should be a C-shape attached to the opposite side of the backing plate from your design. Make the handle thick and robust, so it won’t snap when it has to resist the suction of the concrete.

5. Export the file as an .STL file and slice your print. For the Macklin Manor project, we used a good quality PETG to print the stamp. You can also use a TPU filament like Ninjaflex Cheetah, to make the stamp flexible, but that does have a higher material cost. Whatever you go with, position the STL to print with the handles down, and the design facing up. Slicing at a standard resolution (0.3mm layer height or similar) is perfect for a concrete stamp.

A Simplify 3D slice of the Macklin Manor concrete stamp 3D model.

6. Start the presses. It’s go time. Print your stamp on a large format 3D printer, like the re:3D Gigabot 3+ we use at Pamton 3D. Depending on the size of your stamp, it will take half a day or more to print your stamp, so crack open a beer and relax.

The 3D printed stamp on a Gigabot 3D printer

7. Start stamping. Now’s the time you’ve been waiting for. When pressing it into concrete, stand on the stamp if necessary, and if you mess up, pull it out, hose it off, and try again! You can use your new concrete stamp for whatever you want. You’ll be able to make your mark on all kinds of business or personal projects. 

Not wanting to make it yourself? Next time you need a custom stamp for your concrete project, we’re ready to help. Get in touch with Pamton 3D for a free quote or to talk about your 3D printing needs (but maybe give us a bit more than a couple days’ notice!)

Not in Ohio like Pamton 3D? re:3D Design and Contract printing services ship worldwide, and we’re always available to provide you 3D printers, 3D prints or 3D models to meet your needs.

"Macklin Manor. Est 1989"

Charlotte craff

Blog Post Author

Introducing a New Kind of Paddle Board

A man sitting on a paddle board back to the camera. He is rowing with paddles attached to a track.

In 2014, Guy Chaifetz of West Palm Beach, FL had an idea: what if you combined the versatility of a rowing machine, with the full body workout from cross-country skiing, all while being able to enjoy ocean breezes outdoors on your paddle board. He’d been exploring this product idea for the last seven years, forging through multiple design iterations, overcoming investment hurdles and production stalls until recently, when he successfully launched the Supski Paddle System.

The Supski System attaches to a standard or inflatable paddle board and uses a sliding rail mounted with a modular pole and paddle. The versatile design allows the user to row their paddle board in a variety of positions, modifying their stance as needed to isolate muscle groups and achieve a full body workout. While producing his final prototype, Guy reached out to the re:3D Contract Printing team to 3D print a part he was finding too difficult and expensive to manufacture elsewhere: the Quad Rail Track.

Using the extra large bed of our Terabot 3D printer, re:3D manufactured the 64” rails in a series of 23 hour prints with white ABS filament.

A paddle board with a supski paddle system on it.
Supski Paddle System by Guy Chaifetz

It’s been a long journey for Guy Chaifetz, whose professional background is in video editing and production. He debuted an earlier prototype at Surf Expo in 2015, but despite the positive response from attendees and beta testers, manufacturing hurdles held him back from releasing his product until now.
Guy believes that with the success of the Supski launch, he’ll be able to share it in paraplegic communities to increase accessibility to paddle boarding. Additionally, a future add on includes a sliding chair for regular rowers. Guy hopes to host annual Supski paddle board races, and his ultimate goal would be to have the Supski be part of the Paralympic and Olympic Games.

Want a Supski of your own? Click here to find out how to order.

re:3D salutes Guy Chaifetz for his persistence and tenacity in bringing his dreams to market. If you have an idea you want to transform into reality, our Design and Contract Printing team are here to help you.

Happy Printing!

Charlotte craff

Blog Post Author

re:3D Supplies Parts for Testing America Makes AMCPR Exchange

A gigabot 3d printer, printing a black 8 inch coupling.

re:3D had the honor of helping to stress test AMCPR, America Makes’ new exchange for enabling rapid additive manufacturing production responses during times of crisis, like we did at the outset of the COVID-19 pandemic.

America Makes developed the AMCPR exchange to be a long lasting solution to host design files, review them for safety, and, when needed, distribute them to the US’s additive manufacturing community for production.

Part way through the development process America Makes reached out to members seeking participants to help test the exchange, and re:3D answered the call along with our peers in the 3d printing industry.

We took part in a mock-crisis scenario called Earthquakes Earn Enmity, designed to simulate a response to an earthquake which crippled water delivery systems, otherwise known as pipes!

Ironically just as we were kicking off the mock-crisis, we were faced with a real crisis here in Texas: A hard freeze dropped temperatures to record lows all across the state, and many lost power as the power grids failed to keep up with demand. Pipes burst and created a shortage of plumbing supplies. It illustrated in very real detail how important this AMCPR exchange can be where additive manufacturing can step in during crisis to quickly increase product supplies when traditional manufacturing has to wait to retool their factories.

We met over the course of two month to walk through testing. The first step was to design pipe couplings that could be successfully manufactured with 3D printing. This work was done by a team at the University of Texas at El Paso. The designs were reviewed by America Makes and validated by a separate team at UT El Paso who had not been involved in the original design work. They used the AMCPR exchange to submit and review and finally approve the designs for use on the exchange.

Gigabot 3+ 3D Printing AMCPR Couplings

After the design process, re:3D stepped in as a supplier along with Rapid Application Group, IC3D, Stratasys and Markforged to 3D print the requested couplings. We downloaded the technical data package from the AMCPR exchange, reviewed it with our contract printing team, sliced the included stl files according to their required parameters, and produced three example couplings on Gigabot 3+ XLT out of ABS filament. The three couplings measured 2”, 4” and 8” in diameter. To complete the scenario we each mailed the printed couplings to ASTM International, who was acting as the requestor in our case.

Throughout the process, we advised America Makes on clarifications and revisions the AMCPR exchange needed to improve the usability and accessibility of the system. Things like the variables that different industrial FDM 3D printers have as far as materials, size, and slicing, as well as enhancements to communications and troubleshooting.

One of the highlights for us of helping test the system was participating in some final testing walkthroughs with our customer and fellow America Makes member Pampton 3D. We got to observe how the improvements that had been made in only a few short months eased Pam’s experience first using the AMCPR exchange.

Now that this testing is done and the AMCPR exchange is live, We invite you to join us on the exchange by creating an account to be a designer, supplier or a requestor, so that together with your skills and ingenuity, when we face our next crisis, we’ll all be ready.

To read more about the AMCPR scenario testing, view the America Makes press release and presentation.

Charlotte craff

Blog Post Author

How to Turn Your 2D Logo Into a 3D Print Using Rhino

Everyday we see logos wherever we go. Whether it’s a billboard, flyer, or even a blimp, there’s a good chance it has a logo. One place logos are appearing even more is on 3D prints. 3D printing makes it possible to design and print a variety of objects with a logo stamped right on it. Although it sounds complicated to turn a logo into a 3D print, the process is easy!

You may have seen our previous tutorial on turning a logo into a 3D print, but over the years we’ve come up with even more tips to help your logo shine. In this updated tutorial, you’ll learn how to take a logo from an image to a 3D print.  In this demonstration we’re going to use Rhinoceros 3D, but there many tools including SolidWorksTinkercadFusion 360, or Onshape that could achieve a similar result.

Before you begin, you will need a vector file of your logo (usually in .ai, .dxf, .svg, or .eps format). If you don’t have a vector file, you can convert your raster file (.jpg, .png, .bmp) using an editor like Adobe Illustrator or Super Vectorizer. Online converters exist as well that automatically take your raster image and turn it into a vector image. In the tips and tricks section later, we will show you a third way to convert a raster file directly in Rhinoceros 3D!

How to Make a 3D Logo

Once you have your vector file, start Rhino 3D (or your CAD software of choice) and import your vector file. If your logo is flipped or upside down, you can use a simple mirror command to reorient the logo. Sometimes a vector file will leave a border when imported. Be sure to delete these border lines too! What you should be left with is the logo design you want to use.

Next, choose a shape you want your logo to live in. This can be whatever you want, so don’t be afraid to get creative! In our example, we are housing our re:3D logo inside a circle. Once you have your shape finalized, extrude it outward. The extrusion length should be around half to two-thirds the height of your logo. We will use this shape later to make a platform for our logo.

With your shape extruded, you now want to make your logo pop! You have a choice here, you can either extrude your logo outward or cut your logo inward. In our example, we extruded the re:3D logo out of the cylinder’s face. Be sure you don’t cut or extrude too far, or your logo will be hard to see on the final model. The example we have is a good distance for most logos if you’re unsure.

You now need to make your model solid. Although your logo may appear solid on screen, 3D slicing software will get confused if we don’t join together and solidify all the parts of our model. To join everything together, we perform either a boolean union or boolean difference to remove all the overlapping borders and make our model solid. This is important: if you extruded your logo from your shape, perform a boolean union. If you cut your logo into your shape, perform a boolean difference. Mixing these up could ruin the work you’ve put in so far!

Next, you need to rotate our shape how you want it to sit on a table. Rotate the model so the logo is facing slightly upward. Not only does this make it easier to see your logo, it also helps eliminate overhangs once you print it. Once you’ve positioned your logo how you would like it, look at your logo from the side and draw a horizontal line. Use Rhino’s trim command to cut through your shape and the cap command to seal the hole. For some CAD software, this step may look different.

You now have the basic shape of your tabletop logo! From this point, you can get creative and slice more off your model using the same trim and cap method. Depending on the design of your logo, you can use design features to support your model. For example, we use the shape of the re:3D hexagon to support our final model. Once you’re satisfied with your logo design, export it as a .stl file, slice it in your slicing software, and print it!

Here are a few tips and tricks we found when designing a logo print:

  • If you don’t have a vector file, you can use your CAD software to fix this! In Rhinoceros, import your logo by going to View → Background Bitmap → Place. This inserts your image on the plane and lets you trace out your logo using a sketch!
  • If you want your logo to sit up straight like a sign, extrude or cut your logo at an angle to eliminate any overhang issues.

A video of the process is also available below:

Still unsure about making your own 3D printed logo or looking for a more complicated design? Don’t worry, we can design and print your logo for you!

Happy Printing!

Mike battaglia & brian

Blog Post Author

Rolling Out the re:3D Wind-Up Car

Written by: Brendan J. Towlson

How do we encourage creators to explore new concepts? Give them something to create! When re:3D’s Community Liaison, Charlotte Craff was thinking of ways to spread the message that 3D printing is the future of manufacturing on Manufacturing Day, she came up with the idea of allowing visitors to build something out of 3D printed parts.“We build machines all day; why not provide our guests the opportunity to do so as well?” The wind-up car build was conceived. And the best part: you can print and build it yourself!

The 3D Printed re:3D Wind-Up Car

Attendees of re:3D’s Manufacturing Day Open House had the opportunity to tour the factory, touch and feel 3D prints from around the world, learn about the different skill sets involved in operating this unique hardware company, and finally take home their very own wind-up car. The challenge, though, was that the cars were not pre-assembled. If visitors wanted a car, they had to put it together themselves.

This wind-up car was designed by Mike Battaglia in Rhinoceros 3D software. It is made entirely of 3D printed parts, which is a difficult feat to get right. There are 21 parts, including four wheels, two axles, a gear system, and a spring with a hand crank. Once printed and assembled, you can crank the spring to store potential energy, and then release the car to watch as it converts potential to kinetic energy, and transfers it through the gears to the wheels that drive the car forward. It is a simple concept, but getting the parts to work together was a test of our 3D printing skills, and Mike spent time adjusting tolerances to get it just right.

Twenty-one 3D-printed parts make up the wind-up car.

The cars printed for Manufacturing Day were made of PLA. We learned a lot about this material while designing the cars. For example, white PLA is very pigment saturated, causing it to behave differently when melting and cooling. Tolerances on each part had to be adjusted accordingly. We used up to six of our Gigabot® 3+ workhorses at a time running 36 hour prints continually over a period of two weeks to complete the prints. In the end, for the Manufacturing Day event, printing 56 complete cars added up to 1,176 total parts, 420 hours of print time, and 28 pounds of material.

Challenging 3D print builds like this produce something that is more than just a toy. “It’s meant to demonstrate that even simple machines are complex, fun and buildable by people of all ages,” Charlotte said, “and it’s meant to inspire young people to look deeper into how machines function.” 3D print your own Wind-up car by downloading the design from Thingiverse or Cults!

Brendan J. Towlson

Blog Post Author

Innovating in The Time of Corona(virus)

The exponential spread of the novel coronavirus across the globe led to overwhelming demand on supply chains and disruptions to traditional manufacturing and distribution systems. Because of societal lockdowns and stay-at-home orders, a dire need quickly arose for locally fabricated, specifically focused and creatively sourced solutions to equipment shortages and emergency supplies. At home and across the globe, designers and engineers quickly mobilized into online, open-source prototyping groups to solve the challenge of a lack of personal protective equipment (PPE), ventilators and medical device accessories. 3D printing and additive manufacturing was an obvious go-to, with the ability to rapidly prototype and iterate on the fly, teams could utilize 3D printers to supply healthcare providers with equipment now, as soon as there were designs to print. The intention and needs were obvious and clear – to aid humanity and fill the gaps in supply chains – however, organizing volunteers and streamlining the process to avoid duplicate efforts was a daunting task.

As a company with a wealth of R&D project experience and long used to working as a distributed team, re:3D put out the call that we would prototype – for free – any life-saving devices or PPE in order to expedite review by medical professionals. We are conscientious contributors to the open source design community for COVID-19 response. We take a First, Do No Harm approach to any design work we do for this effort, meaning that it needs to be designed with input from, and in partnership with, the individuals who will utilize any equipment we prototype. We will not create anything that gives a false sense of security, but is ineffective or harmful. Our medical providers on the front lines are in need, and we are honored to take on the challenge.

Face Shields

In two overlapping efforts, we prototyped a design for a 3D printed face shield with full visor coverage and an adjustable zip tie style latching mechanism. The inquiry started in Puerto Rico. Vicente Gascó, our friend and colleague from Tredé and Engine-4 shared he had a supply of 4000 clear plastic lenses for face shields, but no visor to which they would attach to the head. Armed with only the measurements of the lenses and aided by an idea from assembly guru and NASA technician Andrew Jica in Houston, Brian Duhaime, our mechanical engineer in Austin, and Alessandra Montano, our graphics designer in Puerto Rico, pumped out five different iterations of a face shield in only 48 hours.

Vicente and Luis Torres, co-founder of Engine-4, pulled our Puerto Rico Gigabot out of Parallel-18 and added it to the existing Gigabot at Engine-4. Gigabots in Austin and in Puerto Rico printed out iterations of the designs for testing.

In Houston at the same time, CTO Matthew Fiedler, mechanical engineer Helen Little and community liaison Charlotte Craff were meeting with doctors from a local hospital to discuss their needs for a face shield. Knowing that vetted, open source face shield designs were already available, the group reviewed designs by Prusa, Lazarus3D, Budmen and Professional Plastics. The Houston team 3D printed existing options for the doctors to test, but the designs didn’t meet all of the doctors’ needs:

  • Lightweight, fully closed top
  • Reducing the air gap between lens and chin
  • 180 degree lens coverage
  • Limit number of parts to reduce need to source materials in short supply

Knowing that supply chains were disrupted and very little raw materials were available in a timely manner, re:3D conferred with Professional Plastics and determined that plastic sheeting supplies were well behind schedule, but that there were excess pre-cut face shield lenses available. Again, re:3D opted to prototype to existing, local supplies, keeping stress off of traditional supply chains and getting creative with what was available.

Over the next week, Helen built on the work done for the Puerto Rico design, integrated the needs of the doctors and iterated ten different versions of the face shield while working from home and rarely getting to hold a print in her hands. The result is a single print, face shield with an adjustable latching mechanism. It’s designed for 180 degrees of protection and comfort without the addition of foam padding.  It has the approval of the hospital’s Infection Control and is currently available at the National Institutes of Health 3D Print exchange for COVID-19 Respons: https://3dprint.nih.gov/discover/3dpx-013504

Hands-Free Door Pulls

Eliminating unnecessary shared contact surfaces is imperative, especially in buildings where essential workers are operating to continue necessary services. Our team includes multiple military service members. One of our reservists was activated when she sent out a call back to our team to make some hands-free door pulls to use on the base. Aided by Matthew Fiedler, Mike Battaglia, our designer in Austin, and Brian Duhaime went to work prototyping hands-free door pulls for lever-style and bar-style door handles.

These designs were drafted before we had dimensions for either of the door styles, so had to be modeled in such a way to enable incremental dimensional adjustments while preserving the models’ shapes. During her free time, the service member sent feedback on the first versions via pictures and notes, and Brian and Mike iterated the changes remotely, melding organic shaped and attachment options into single print solutions.

The hands-free door pulls are now successfully in use on base, protecting our military personnel as they work to respond and aid COVID-19 efforts. These models are available for download here https://3d.nih.gov/entries/3DPX-013825 and here: https://3d.nih.gov/entries/3DPX-013822

From Intubation Box to Drape Stands

As a 3D printer manufacturer, we are understandably advocates of 3D printing use in manufacturing. However, we recognize that not all innovations require, or are best served by, an exclusively 3D printed solution. As we do much of our manufacturing in-house, including machining parts on our CNCs, we can apply rapid prototyping principals to traditional manufacturing methods. Take the example of an aerosol or intubation box:

We were contacted by an anesthesiologist based in Austin about modifying such a box, used to protect doctors and nurses from aerosols released when intubating a patient. The doctor’s main concerns were ability to clean and the need for a “helper” hole. This equipment needed a curved, clear surface rather than sharp corners where germs could hide. We offered to prototype using polycarbonate sheeting and an aluminum framework available in our machine shop.  In this case, the request for aid evolved before we produced a prototype. The anesthesiologist reported that the existing boxes were unwieldy and took up too much space, so instead requested a solution for supporting clear plastic drapes to achieve the same purpose and be easy to store. Matthew Fiedler proposed a combined 3d printed base and a bent aluminum frame for the project. Design work is ongoing and we will update this post as the prototype develops.

Are you a healthcare professional needing a COVID-19 related equipment solution? Please reach out to us at info@re3d.org to begin coordination. Should you wish to purchase any of our COVID-19 designs. They’re available in our online store: https://shop.re3d.org/collections/covid-19

Interested in supporting existing efforts to fight COVID-19? See below for how to help in Austin, Houston and Puerto Rico.

There is a huge maker community that has sprung to action to support the 3D printing of PPE here in Austin and the surrounding areas.  One of the largest efforts is being run by Masks for Docs (masksfordocs.com), who are actively soliciting donated face shield prints, assembling the shield, and distributing them to hospitals, health clinics, nursing homes, etc – all around the Austin area.  To help with this effort, re:3D will be collecting donated 3D printed face shields in drop-boxes at two locations, Brew & Brew and the Draught House Pub.
 
If you have a 3D printer at home or work & want to help out in the Austin area, you can access the Face Shield Design here.
 
Recommended Print Settings:
  • PETG is preferred, but PLA is completely acceptable if you don’t have PETG or are not able to print with it.
  • 3-4 solid top/bottom layers
  • .3mm layer height
  • 5 Perimeters (AKA Shells or walls)
  • 0% Infill
 
Drop off boxes can be found at:
 
Brew & Brew
500 San Marcos St #105, Austin, TX 78702
 
The Draught House
4112 Medical Pkwy, Austin, TX 78756
TXRX and the amazing maker-community continue to organize face shield collection around Houston.  We are donating 3D printed face shields as well as hosting a community donation box for makers in the Clear Lake area who are printing the face shields at home.  At our factory, the batches are consolidated and sent to TXRX for assembly and distribution to hospitals and first responders in the Houston area.  To date, over 1600 face shields have been donated from the Clear Lake area –  keep it up!
More information and the design file is available here.
 
The Clear Lake drop off box can be found at:
re:3D, Inc.
1100 Hercules
STE 220
Houston, TX 77058
The maker community, including a few Gigabots have done a fantastic job collaborating in San Juan & beyond. We are currently collecting requests for those in need of PPE and sharing opportunities to connect with Engine-4 and Trede’s efforts in Bayamon and additional efforts. If you live in Mayaguez and would like create face shields to be assembled with sheets that have been donated to Engine-4, a drop off box has been established. A UPRM student has also initiated a Slack channel to share other needs. Email info@re3d.org for access.
 
The Mayaguez drop off box can be found at:

Maker Chris’ house at:
76 Calle Santiago R Palmer E, Mayaguez PR 00680


If you live outside of these areas and/or are seeking ways to contribute, A Form to Volunteer is Available Here. We will be responding to inquiries this weekend and doing our best to facilitate introductions:)

Charlotte craff

Blog Post Author