COVID-19 Update: Operations, Serving Educators & Joining the Fight

3D printed mannequin using a 3D printed face shield

2022 Update

Dear Gigabot Family,

re:3D still has about 200 face shields available for free anyone who needs them to keep your team safe. please fill out the form at https://houston.impacthub.net/getppe/

re:3D has returned to normal operations and are excited to be welcoming back groups of visitors to the Houston factory for tours and classes along with continuing our virtual tours. We are pushing forward on many of our R&D projects that began during the pandemic, and are building bigger with Gigalab, a shipping container sized manufacturing lab. We’re printing with even more trash plastic on Gigabot X and are hard at work on developing the next version of Gigabot, the Gigabot 4. Please reach out to us at either 512-730-0033 or info@re3d.org. We’re always happy to hear from you.

~ Team re:3D

2021 Update

To our Customers and Friends,

Since the latter half of 2020, re:3D has continued to support 3D printed PPE efforts in our local communities and beyond.

With a generous grant from Unreasonable Impact with Barclays, our program PPE for the People has expanded to provide PPE to those in need anywhere. Should you or a group you know have a need for face shields, ear savers, door pulls or splash guards, please fill out the request form at https://houston.impacthub.net/getppe/

We are heartened that vaccine distribution  continues to ramp up and look forward to when we will be able to re-open our Houston Factory to in-person guests. Until then, we’ll keep making printers and PPE to protect those who can’t get it elsewhere, and you are always welcome to sign up for a virtual tour by visiting https://re3d.org/community/

Happy Printing!

~the re:3D Team

Update May 29, 2020

It’s been a month since our last update, and our COVID-19 response is still going strong! On May 12, we were honored to receive an honorable mention in the America Makes Fit to Face – Mask Design Challenge.  Designer Mike Battaglia and Engineer Samantha Reeve submitted a mask in two sizes designed to be printed with NinjaTek Cheetah. We continue to collaborate with projects for supplying PPE and consulting on new solutions for face shields to ventilators because we understand that effective face protections is essential for keeping our employees and the general public happy and healthy.

Our Houston factory is still closed to the public, but our team remains committed to building your Gigabots and filling your supply orders and service needs.

Gigabot customers around the world are tirelessly supporting their communities and we are honored to share their stories. If you have been doing COVID-19 work, we’d love to hear from you!

AUSTIN UPDATE
Thanks to the efforts of so many groups in the city, the PPE needs for healthcare workers there have been met and we have wound down our collection boxes for 3D printed PPE.

HOUSTON UPDATE
As the city begins to open back up we have teamed up with Impact Hub Houston on PPE for the People, an effort to provide PPE to workers in minority and under-served communities who are at greater risk of critical illness from COVID-19. Please support this project by sharing, donating and letting local businesses know about the opportunity.

PUERTO RICO UPDATE
The PPE support work in Puerto Rico continues and the Gigabot collaboration at Engine-4 keeps churning out supplies for the island.

If you’d like to be connected to any local effort we would be happy to make introductions and provide resources. Please reach out to us at info@re3d.org.

Update: April 25, 2020

It’s hard to believe that two more weeks have past since our last post! We continue to aggregate and collect your PPE donations in Austin, Houston and PR. We also (just met the deadline for the America Makes Mask Fit Challenge). The final design will be posted to our NIH 3D print exchange tomorrow:)

We continue to be inspired by YOU, and welcome your pics and videos for future stories!

For those of you looking to help with PPE shortages near Austin, Houston and Puerto Rico, details can be found below:

AUSTIN
There is a huge maker community that has sprung to action to support the 3D printing of PPE here in Austin and the surrounding areas.  One of the largest efforts is being run by Masks for Docs, who are actively soliciting donated face shield prints, assembling the shield, and distributing them to hospitals, health clinics, nursing homes, etc – all around the Austin area.  To help with this effort, re:3D will be collecting donated 3D printed face shields in drop-boxes at two locations, Brew & Brew, Capital Factory and the Draught House Pub.
 
If you have a 3D printer at home or work & want to help out in the Austin area, you can access the Face Shield Design here. Recommended Print Settings:
  • PETG is preferred, but PLA is completely acceptable if you don’t have PETG or are not able to print with it.
  • 3-4 solid top/bottom layers
  • .3mm layer height
  • 5 Perimeters (AKA Shells or walls)
  • 0% Infill
 

Drop off boxes can be found at:
Brew & Brew
500 San Marcos St #105, Austin, TX 78702
The Draught House
4112 Medical Pkwy, Austin, TX 78756
Capital Factory
 701 Brazos St, Austin, TX 78701
(located in the parking garage, next to the loading dock:)
 
HOUSTON
TXRX is winding down its collection of its 3d printed face shield as they have been able to move to injection molding; a move we fully support! We are keeping our drop box open for community PPE donations and will make sure they get donated to those in need. Currently we can accept: assembled face shields, ear savers and Montana Masks. As we get more requests we will post opportunities here.

The Clear Lake drop off box can be found at:
re:3D Inc
1100 Hercules STE 220 Houston TX 77058
 
PUERTO RICO
The maker community, including a few Gigabots, have done a fantastic job collaborating in San Juan & beyond. We are currently collecting requests for those in need of PPE and sharing opportunties to connect with Engine-4 and Trede’s efforts in Bayamon, or other groups mobilizing. If you live in Mayaguez and would like create face shield to be assembled with sheets that have been donated to Engine-4, a drop off box has been established. A UPRM student has also initiated a Slack channel to share other needs. Email info@re3d.org for access.
 
 
San Juan face shield coordination:
Engine 4 Co-working Space: donation3dprinting@outlook.com
 
Mayaguez Drop-off: 
UPRM Transit and Security, Tránsito y Vigilancia:
Enter UPRM Campus through main gate, and guard will direct you

Update: April 10, 2020

What a week! You all have done an amazing job helping our neighbors & the community at large!

While we continue to iterate this face shield design for the Texas Children’s Hospital (you can view the design on the NIH 3D Print Exchange), as well as hands-free door pulls, we have been blown away by the many Gigabots around the world who are helping with the fight. We’ve started collecting some stories. If you would like to be added, please feel free to share your pictures, details and video with info@re3d.org!


Some of you have also asked how you can use Gigabot and/or other printers to support the local movements near our offices. For those of you looking to help with PPE shortages near Austin, Houston and Puerto Rico, details can be found below:

AUSTIN
There is a huge maker community that has sprung to action to support the 3D printing of PPE here in Austin and the surrounding areas.  One of the largest efforts is being run by Masks for Docs (masksfordocs.com), who are actively soliciting donated face shield prints, assembling the shield, and distributing them to hospitals, health clinics, nursing homes, etc – all around the Austin area.  To help with this effort, re:3D will be collecting donated 3D printed face shields in drop-boxes at two locations, Brew & Brew and the Draught House Pub.
 
If you have a 3D printer at home or work & want to help out in the Austin area, you can access the Face Shield Design here. Recommended Print Settings:
  • PETG is preferred, but PLA is completely acceptable if you don’t have PETG or are not able to print with it.
  • 3-4 solid top/bottom layers
  • .3mm layer height
  • 5 Perimeters (AKA Shells or walls)
  • 0% Infill
 

Drop off boxes can be found at:
Brew & Brew
500 San Marcos St #105, Austin, TX 78702
The Draught House
4112 Medical Pkwy, Austin, TX 78756
 
 
 
HOUSTON
TXRX and the amazing maker-community continue to organize face shield collection around Houston.  We are donating 3D printed face shields as well as hosting a community donation box for makers in the Clear Lake area who are printing the face shields at home.  At our factory, the batches are consolidated and sent to TXRX for assembly and distribution to hospitals and first responders in the Houston area.  We’ve received up to 300 donations in 6 hours- keep it up!
More information and the design file is available here.
 

The Clear Lake drop off box can be found at:
re:3D Inc
1100 Hercules STE 220 Houston TX 77058
 
 
 
PUERTO RICO
The maker community, including a few Gigabots, have done a fantastic job collaborating in San Juan & beyond. We are currently collecting requests for those in need of PPE and sharing opportunties to connect with Engine-4 and Trede’s efforts in Bayamon, or other groups mobilizing. If you live in Mayaguez and would like create face shield to be assembled with sheets that have been donated to Engine-4, a drop off box has been established. A UPRM student has also initiated a Slack channel to share other needs. Email info@re3d.org for access.
 
 
San Juan face shield coordination:
Engine 4 Co-working Space: donation3dprinting@outlook.com
 
Mayaguez Drop-off: 
UPRM Transit and Security, Tránsito y Vigilancia:
Enter UPRM Campus through main gate, and guard will direct you

 

If you live outside of these areas and/or are seeking ways to contribute:

A Form to Volunteer is Available Here. We will be responding to inquiries this weekend and doing our best to facilitate introductions:)

Update: April 3, 2020

re:3D is working on a number of different projects related to 3D printing and COVID response.  Our Houston factory is helping to support two efforts.  The first is supporting the efforts of TXRX and the amazing maker-community organizing taking place around Houston.  re:3D is donating 3D printed face shields as well as hosting a community donation box for makers in the Clear Lake area who are printing the face shields at home.  At our factory, the batches are consolidated and sent to TXRX for assembly and distribution to hospitals and first responders in the Houston area.  Second, the re:3D design team is prototyping a custom face shield design, in conjunction with doctors from Texas Children’s Hospital.  The new design incorporates a pre-cut clear plastic face shield with a 3D printed holder/headband.

In Austin, re:3D is rallying the local maker community.  While there are a number of people working on the 3D printed PPE issue in the Austin area, re:3D is hoping to help organize these efforts.  The Austin team is designing hands-free door pulls and intubation boxes, and we will be releasing all of the 3D printable open-source designs that we have created, including face shields, door pulls and anything else we develop, free of charge. We are opening Austin community drop boxes at multiple locations where anyone who 3D prints can donate their COVID-19 parts. location information will be released as soon as it’s finalized.

In Puerto Rico, re:3D is supporting efforts led by Engine-4 on 3d printing face masks and ventilator splitters. Thanks to efforts by Parallel18, our Gigabot has been relocated to Engine-4 to print for this effort and we are hosting weekly calls for healthcare professionals, designers and makers to organize the community to support creating PPE unique to the needs on the island. We are connecting with every available Gigabot owner on the island to help them join the cause.

For anyone who wants to volunteer to help, please fill out this form.

Updated: March 25, 2020

To our Global Gigabot Family and Supporters,

We hope this message finds you and your loved ones safe and healthy. The 3D printing community is a talented, diverse and compassionate arm of the creative tech ecosystem. We are energized and inspired by the mass mobilization of 3D printing to tackle COVID-19 head-on by providing protective gear to medical personnel, medical equipment to aid victims and filling gaps in supply chains. Every day, you are proving that this technology changes the world for the better. Keep at it!

re:3D IS OPEN FOR BUSINESS!

We have been closely following COVID-19 developments in our areas and listening to the recommendations from local and federal authorities. The small yet mighty re:3D team has always been mobile and adaptable, and we are continuing our regular operations while keeping the health and safety of our team at the forefront of all considerations. Here’s how:

    • Your Gigabots® are being built and shipped on their regular schedule.
    • Your supply orders are being fulfilled with minimal delay.
    • Your 3D printing, design and 3D scanning services are moving forward as planned.
    • As an essential business, the Houston factory is open and fully operational. In-person visits are restricted to deliveries and pickups only to respect guidance on social distancing.
    • Meetups, walk-in tours and in-person classes are suspended until further notice.
    • Classes will move to online-only as format and demand allows.

$100 SERVICE CREDITS FOR EDUCATORSThe education landscape has dramatically changed in the last few weeks and as many educators gamely adapt to new methods of teaching, you have awed us with your adaptability, tenacity, and positivity. In recognition of your herculean efforts, now through April 10th we are offering to educators a $100 credit, with no minimum purchase required, for re:3D printing, designing and scanning services.

For all those schooling from home, we are extending a 20% off discount on all services (scanning, design, printing, materials testing) for any effort supporting distance learning.

Service quotes can be requested at re3d.org/services

HELPING THE EFFORT TO FIGHT COVID-19

re:3D’s Houston factory is equipped with a printer farm of large-format industrial Gigabot® 3D FFF and FGF printers, a metrology-grade 3D scanner, a full machine shop that includes two CNCs, manual lathe, drill press and cutting tools. This equipment and our team of 25 engineers, designers and technicians is available to fabricate equipment for healthcare providers that has been reviewed for viability and safety by medical professionals. Please reach out to us at info@re3d.org to begin coordination. We are happy to prototype any life-savings device for free in order to expedite review by medical professionals.

For those looking for ways to put your 3D printing know-how to work in the effort to fight COVID-19, we are collecting contact information to share further developments and opportunities to 3D print for those in need.

 A Form to Volunteer is Available Here 

Additionally, a great list of other projects has been curated by our friends at the non-profit Women In 3D Printing.

Stay Healthy and Keep Printing!

  ~Gigabot & The re:3D Team

Gigabot Engineering Updates – February 2020

Over the last few months, our engineering team has made some iterative design changes to both our Gigabot 3+ and Gigabot X 3D Printers.

Parts modified are:

Gigabot 3+

  • 10063  GB3+ Bed Side Plate
  • Z-Axis Stepper Motors
  • 11907 GB3+ Acme Flange Nut Cup
  • 11093 GB3+ X/Y Upright

Gigabot X

  • 11377 GBX Stepper Driver

 

View the video below to find out how they’ve changed!

Optimizing the Properties of Recycled 3D Printing Materials

Below is a repost produced by 3DPrint.com last year, which highlighted our first peer reviewed paper on Gigabot X. You can view download the research, along with other papers under the Gigabot X section at https://re3d.org/gigabot. 

Top: virgin PLA, bottom: recycled PLA

In an attempt to mitigate the environmental impact of 3D printing, several organizations have taken to creating recycled filament, made not only from failed prints but from water bottles and other garbage. Inexpensive filament extruders are also available to allow makers to make their own filament from recyclable materials. Not only does recycled filament help the environment, but it also helps 3D printer users to save money and be more self-sufficient, making the technology more viable in remote communities.

3D printer manufacturer re:3D has been working on making their Gigabot 3D printer capable of printing with recycled materials, for the purpose of helping those in remote communities to become more self-sufficient. In a college paper entitled “Fused Particle Fabrication 3-D Printing: Recycled Materials’ Optimization and Mechanical Properties,” a team of researchers used an open source prototype Gigabot X 3D printer to test and optimize recycled 3D printing materials.

In the study, virgin PLA pellets and prints were analyzed and compared to four recycled polymers: PLA, ABS, PET and PP.

Top: Recycled ABS, bottom: recycled PET
“The size characteristics of the various materials were quantified using digital image processing,” the researchers explain. “Then, power and nozzle velocity matrices were used to optimize the print speed, and a print test was used to maximize the output for a two-temperature stage extruder for a given polymer feedstock. ASTMtype 4 tensile tests were used to determine the mechanical properties of each plastic when they were printed with a particle drive extruder system and were compared with filament printing.”

The Gigabot X showed itself to be able to print materials 6.5 to 13 times faster than conventional 3D printers depending on the material, with no significant reduction in mechanical properties. This is significant because each time a polymer is heated and extruded, whether during the filament creation process or the 3D printing process, its mechanical properties are degraded. One option to reduce degradation, the researchers explain, is to 3D print directly from scraps, or particles, of recycled plastic.

The Gigabot X was also capable of 3D printing with a wide range of particle sizes and distributions, which opens up more possibilities for the use of materials other than pellets and filament. The processing of the materials was minimal – they only needed to be cleaned and ground or shredded. Mechanical testing using tensile strength was performed and showed that the polymer properties were not degraded; however, the researchers suggest that further mechanical testing should be performed to test properties such as compression, impact resistance, fracture toughness, creep testing, fatigue testing, and flexural strength.

There are a few limitations with the prototype Gigabot X, including lower than normal resolution in the XY plane. Due to the high heat transfer rates from the large contact area of the printer’s hotend, parts that are less than 20 mm x 20 mm cannot be 3D printed reliably. The Gigabot X also currently lacks a part cooling system, so it is limited in the geometries of parts that it can print. However, it is still a prototype, and so can be considered a work in progress.

Authors of the paper include Aubrey L. Woern, Dennis J. Byard, Robert B. Oakley, Matthew J. Fiedler, Samantha L. Snabes and Joshua M. Pearce.

Gigabot 3+ Updates for Fall 2019

re:3D’s Research and Development team never stands still, and while we’re developing the next generation of your Gigabot® and Gigabot® X 3D Printers, we’re continually looking for ways to refine the current iteration’s user experience, precision, and quality. As of October 1, 2019, all new Gigabot®3+ 3D printers ship with the below enhancements. Current Gigabot® owners can order these as replacement parts that are fully compatible with previous versions.

Major Changes

LED Light Cover

To enhance user comfort and safety, we’ve created a full length 3D printed cover that fits over the top of the front-mounted LED light strip.

Printed Extruder indicators and part numbers

Our Unibody Extruder design, which was released this past spring, as well as our Filament Detection units now features numerical hot end indicator labels for a visual aid for filament loading. Additionally, these and many other 3D printed parts now include part and revision numbers. Not sure what a part is called? Search our store using the part number or share the part number with customer support to help streamline troubleshooting communication.

FIRMWARE RELEASE VERSION 4.2.3

Our newest iteration of Gigabot®3+ firmware has been posted at re3d.zendesk.com along with instructions for how to flash your firmware. This firmware update includes the following changes:

  • Increased electrical current to X and Y motors to prevent layer shifts.
  • Decreased filament feed rate during the Filament Change routine for easier purging.
  • Minor Bug Fixes

Fit and Strength Adjustments for Polycarbonate 3D Printed Parts

The following parts have had material added for improved strength and durability:

  • 10870 Extruder Tensioner Left 
  • 10871 Extruder Tensioner Right 

The below parts have had their designs modified for better fit or print quality:

  • 11157 Gigabox Magnet Bracket 1 
  • 11245 Gigabox Magnet Bracket 3
  • 11158 Gigabox Magnet Bracket 4
  • 11159 Gigabox Y Support Magnet Bracket
  • 11238 Gigabox Enclosure Corner Cap
  • 10511 XY Upright Cover
  • 11251 Filament Detection Cover Right
  • 11252 Filament Detection Cover Left
  • 10599 Filament Tube Connector

We’ve upped the durability and longevity of our head cable and added 3D printed wire separators inside the cable carrier to protect the electrical wiring as it rolls and unrolls during normal Gigabot® operation.

Under the category of non-3D printed parts, we’ve thickened our bed plates to improve strength and rigidity. The square, left and right leveling blocks attached to the bed frame have had fit adjustments. We’ve also adjusted hole spacing for Gigabox Enclosure panels and split the top panel on the Gigabox Enclosure into two pieces. This improves manufacturing quality as well as increases modularity, as one piece can now be removed for venting or other customizations.

Do you have an improvement or a design change you’d like to see for this or future versions of Gigabot®? Fill out our New Feature Request form and share your ideas with us!

Charlotte craff

Blog Post Author

Gigabot X Gets NSF SBIR Phase II Funded

We are thrilled to share that re:3D has received the NSF SBIR Phase II grant to further commercialize Gigabot X! You can view the official award here for more details on this $749,111.00 grant and also check out the latest video update on Gigabot X published last week (a complementary blog post is coming your way very soon as well to showcase these features). But for now, we just wanted to share the good news along with our deepest gratitude for each and every one of you out there who was an integral part of our journey to this milestone. Below you’ll find the official press release or you can download the PDF version of it here re:3d NSF SBIR Phase II Awardee Press Release.

re:3D Inc. Awarded Competitive Grant from the National Science Foundation

America’s Seed Fund Powered by NSF Provides Funding for R&D; Helps small businesses move innovations out of the lab and into the market

Houston, Texas April 30, 2019 –  re:3D Inc. has been awarded a National Science Foundation (NSF) Small Business Innovation Research (SBIR) Phase II grant for $749,111 to commercialize innovative technology by conducting research and development (R&D) work on increasing maker manufacturing through 3D printing with reclaimed plastic.

re:3D manufactures large-scale, affordable 3D printers and most recently, printers printing from multiple types of plastic waste as made possible with the support of NSF SBIR. With headquarters in Texas and Puerto Rico, re:3D has 20+ employees who serve their customers in 55+ countries in industries such as healthcare, defense, manufacturing, art and more. Beyond creating 3D printers, re:3D also offers 3D printing contract services, design, education, consulting and custom 3D printer manufacturing in pursuit of decimating and cost and scale barriers to 3D printing while simultaneously transforming traditional supply chains and empowering more circular economies.

NSF SBIR support of this proposal is justified for the technology’s far-reaching potential. The two main impacts of such hardware are environmental: for the technologies’ potential to upcycle otherwise discarded post manufacturing or post-consumer waste, reduction in on-demand inventory holding, and condensed supply chains, and societal: for the technologies’ potential to create new jobs and enterprises along with the 3D printing ecosystem by enabling locally driven manufacturing, thus bringing jobs back to America.

“The National Science Foundation supports startups and small businesses with the most innovative, cutting-edge ideas that have the potential to become great commercial successes and make huge societal impacts,” said Graciela Narcho, Acting Director of the Division of Industrial Innovation and Partnerships at NSF. “We hope that seed funding will spark solutions to some of the most important challenges of our time across all areas of science and technology.”

“We are incredibly humbled to receive support from the NSF to continue our research to commercialize a full suite of affordable technologies that can enable 3D printing from virgin & reclaimed regrind and pellets,” said re:3D’s Co-Founder and Catalyst, Samantha Snabes. “During our Phase I grant we were able to create a prototype printer, now being sold in beta. Phase II will allow us to evolve the printer as a full-scale commercial offering, along with a grinding and drying system. We are eager to share our findings with the community as we Dream Big and Print Huge from Recyclables!”

Small businesses can receive up to $1.5 million in funding from NSF. Companies must first have received a Phase I award (up to $225,000) to become eligible to apply for a Phase II grant (up to $750,000) to further develop and commercialize the technology. Small businesses with Phase II grants are eligible to receive up to $500,000 in additional matching funds with qualifying third-party investment or sales.

Small businesses with innovative science and technology solutions and commercial potential across almost all areas of technology are encouraged to apply. All proposals submitted to the NSF SBIR/STTR program undergo a rigorous merit-based review process. NSF’s deadlines for Phase I small business proposals occur twice annually, in June and December.

To learn more about the NSF SBIR/STTR program, visit: seedfund.nsf.gov and see more information on re:3D’s Phase II Award here.

About the National Science Foundation’s Small Business Programs: America’s Seed Fund powered by the National Science Foundation (NSF) awards nearly $200 million annually to startups and small businesses, transforming scientific discovery into products and services with commercial and societal impact. Startups working across almost all areas of science and technology can receive up to $1.5 million in non-dilutive funds to support research and development (R&D), helping de-risk technology for commercial success. America’s Seed Fund is congressionally mandated through the Small Business Innovation Research (SBIR) program. The NSF is an independent federal agency with a budget of about $8.4 billion that supports fundamental research and education across all fields of science and engineering.

About re:3D® Inc. is committed to decimating the cost & scale barriers to industrial 3D printing. After pioneering the world’s first affordable, human-scale industrial 3D printer, re:3D is now enabling 3D printing directly from reclaimed plastic pellets or flake. Beyond creating the world’s largest, most affordable 3D printers, re:3D also offers 3D printing services including contract printing, design, education, custom 3D printers and consulting. Launched in 2013 by for NASA contractor technologists, re:3D now has a scaling workforce of 20+ employees with offices in Houston, Austin, and San Juan, Puerto Rico and service customers in 55+ countries who are solving problems across industries such as health, manufacturing, education, and more. For more info, visit www.re3D.org.

Cat George

Blog Post Author

Grinding Away at GBX: Investigating Printing Materials

This month we have tested a variety of printing materials with the GBX, including recycled PET pellets, grocery store bags, plastic Starbucks cups, and polycarbonate manufacturing waste. And our in-house failed prints and supports? Instead of going into the trash, we’re granulating them into PETG, PLA, and polycarbonate regrind for GBX printing.

A big hurdle for printing with regrind is identifying particle characteristics– size, sphericity, etc– for optimal printing. Using the open source software ImageJ, we’ve determined the ideal particle size to be around 3mm in length, but further testing still needs to be done. For more information on the particle analysis and feed tests, check out our forum posts: ImageJ Particle Analysis and ImageJ Circularity Analysis and Feed Tests

Helen Little

Blog Post Author

re:vealing re:3D’s Houston Headquarters

In early April, re:3D held two events celebrating the re:vealing of our community space and customer showroom at our Houston headquarters. Nicknamed Mission Control by the re:3D team, the Houston location has always been our home for manufacturing, operations and research. As we near our second anniversary in this 7000 square foot factory in Clear Lake, near the NASA Johnson Space Center campus, we’re excited to share that this space now houses a dedicated showroom recognizing the creativity, innovation, and entrepreneurship of those who harness the power of Gigabot, as well as a public gathering space which we and our greater community can use to host events, workshops, classes and meetups to explore all things 3D printing.

A silver mannequin of a boxing lady wearing a black hat and yellow tank top stands in front of a rustic wooden slat wall holding re:3D merchandise.

To get the ball rolling, The Clear Lake Area Chamber of Commerce hosted an official ribbon cutting & reception. We invited good friends from near and far (including a crew from Bunker Labs in Austin!), government officials, and Houston customers to celebrate with us and experience a party, re:3D style! Amidst the congenial hums of our Gigabots printing new creations, we toasted champagne and enjoyed tasty hors d’oeuvres provided by the team at  Hedrick’s Catering. Guests perused 3D prints designed by our global family of Gigabot users and got their first look at our new architectural wall panels conceived and produced by the innovative geniuses at Houston-based māk studio, also a re:3D customer. Clear Lake Area Board Chairman Brian Freedman presented re:3D Co-Founder and Catalyst Samantha Snabes a certificate and plaque, officially naming April 9, 2019 re:3D Day in Clear Lake!

photo credit: Morgan Hamel
Photo Credit: Morgan Hamel

At the end of the same week, re:3D kicked off our expanded outreach initiatives by hosting a community open house, and we’re grateful to the Houston Chronicle for sharing our news and helping draw people to our events. 3D printing enthusiasts of all ages joined us for tours of the factory spaces, hands-on activities, contests and a preview of our upcoming meetups and classes. We held a guess-the-number-of-layers contest where the prize for the closest guess was our friendly Eddy the Astronaut lamp.

A 3D printed lamp shaped like the body of an astronaut with an Edison light bulb instead of a helmet
Photo Credit: Morgan Hamel

Engineers of the future (and engineers at heart!) joined our Gigacrew and learned how to build a section of our Gigabots. These handy makers put together at least forty of our new unibody extruder block assemblies, which we’ll soon be rolling out as an available upgrade on the Gigabot.

Intrepid explorers took on the challenge of our scavenger hunt wherein they discovered some of the unique 3D printed features we’ve added to the factory since moving in, including a stapler-shaped door handle, whimsical light switch plates and custom computer parts. Food, fun and curiosity abounded while we opened minds to the limitless possibilities of 3D printing, and we couldn’t be more excited to now have a dedicated space to dive deep and collaborate with our customers, innovators and the next generation of problem solvers endeavoring to Dream Big, Print HUGE!

To schedule a Houston HQ tour or workshop, email us at discover@re3d.org.

For more information about re:3D community events, check out our calendar.

Three kids sit at a table with tools and build part of a 3D printer. A crowd of people is in the background.
Photo Credit: Kate Somers

Charlotte craff

Blog Post Author

The Power of Printing With PETG

We’re excited to now sell PETG at re:3D! Why do you ask? I sat down with Co-Founder and Head of Technology, Matthew Fiedler, for some Q&A on the power of 3D printing with PETG. Read below, check out some video footage of how we are using PETG at re:3D and tune into our inaugural Meet with a 3D Printing Engineer live session next week no matter where in the world you are to chat with our 3D printing engineers live and bring any questions you may have.

Why is re:3D releasing and deciding to sell PETG now?

“Polyethylene terephthalate Glycol is an interesting material for FFF AM because of the enhanced material properties compared to the most common filament, PLA. PETG exhibits high layer to layer bonding strength, slightly elevated Tg of 80C over PLA which has a Tg of around 55C. PETG also allows better light transmission which can be a great benefit for parts that require visible light to pass through them.”

What do people use it for?

“PETG is most commonly known as the plastic used in water bottle and soft drinks containers. In 3D printing, it makes an excellent breakaway support material for parts printed in PLA. The opposite is also true where you can use PLA as breakaway support material for parts made in PETG.”

What are some unique advantages of PETG?

“Parts printed in PETG are also slightly more flexible than those made from PLA.“

What have engineers done with it at re:3D to date?

“We show several videos on our YouTube channel how well it works as support and raft material (like this video). In pellet form, we use PETG with Gigabot X to produce skateboards, decorative interior design pieces and a basket for coffee pickers in Puerto Rico. (You can watch Gigabot X 3D printing a vase with PETG here.)”

What are some of your favorite prints or examples of 3D printing with PETG?

“My two favorite are Gigabot X produced interior design vase because of the stunning visual and light qualities of PETG and the coffee harvest basket for the coffee farm in Puerto Rico.” 

Any additional context or pre-emptive answers to questions people may ask about materials?

“You can purchase 5lb and 15lb spools of PETG in our online store. You can print PETG on your Gigabot with a nozzle temp of 235C and bed temp of 60C. A thin coating of Elmer’s X-treme glue stick on the PRINTinZ surface will provide excellent adhesion. You can use the same print speed and layer heights as PLA. We have created a special Simplify3D profile for using PETG and PLA together. You can download it from Zendesk here.”

Have more questions for Matthew on 3D printing wit PETG? Tune into Meet with a 3D Printing Engineer next week via Facebook for a live session with him. Also, if you’re as excited as we are about 3D printing with PETG – watch videos on our YouTube and buy PETG online at shop.re3D.org!

PET 3D Printing Filament materials

Buy PETG online at shop.re3D.org!

Cat George

Blog Post Author

Skating on Water Bottles

This post is a follow-up to this one on the Gigabot X pellet printer. If you haven’t checked it out or watched the video, start there!

We know you’ve been dying to know what on Earth our Gigabot X pellet printer prototype was printing in the last update video, so we’re here to deliver!

Without further ado, the reveal.

The slick design was dreamt and drawn up by one of the students working on Gigabot X material validation at Michigan Tech University. Our team was really excited about the idea of printing the board using one of our favorite new materials we’ve been testing: recycled PET.

Giving water bottles a second lease on life as a fun, functional object? As Robert put it, “You know, we had to do it.”

We went through a few trials of the board, snapping a couple of the earlier prints due to the design being a little too thin or not printing it with enough infill. We thickened up the design and increased the infill percentage to make the board a little sturdier, leaving us with a roughly six and a half hour, five pound print.

After popping on some trucks and wheels, re:3D Engineer & Resident Skater Jeric Bautista took the board for a spin behind the Houston office.

Jeric gave the board his stamp of approval. “The skateboard was really fun to use,” he said. “It was smooth to ride and the PET made it nice and springy, which is similar to normal skateboards. Seeing firsthand the functionality of recycled plastic was definitely very cool.”
 
Keeping plastic bottles out of landfills by giving them a new life as functional objects? That’s something we can roll with.

Morgan Hamel

Blog Post Author

Gigabot X Update

Hot off the 3D printing press, it's a Gigabot X update!

It’s been about four months since we closed out a successful Kickstarter campaign for our pellet printer, Gigabot X, on April 23rd. Since we last touched base with you, our engineers have been hard at work making improvements to the design for our Kickstarter backer beta testers.
 
The main focus of the redesign has been the extruder, which has been completely overhauled over the last several months. There’s a new metal extruder body, improved wiring of heaters and the external motor driver, and a redesigned screw for more consistent extrusion.
Some previously 3D printed components within the extruder body were switched to metal for the purpose of durability. Originally printed for ease of testing modifications, our engineers found that some components weren’t lasting as long as they’d like to see due to the tremendous forces being generated within the hopper as the screw extrudes pellets. Now that the design of certain pieces is more final, we started machining certain components in metal to better deal with wear and tear.
 
The modular, 3D printed hopper has also seen significant changes. With the previous design, our R&D team found that the amount of pellets being pushed through by the screw was much higher than they expected – and wanted. They increased the size of the hopper to slow down the rate, which also provides the dual benefit of not having to replenish the pellets as often.

The first Gigabot X prototype took a trip up to Michigan and is currently residing at Michigan Tech University, where a group of students are performing material testing research as a collaboration supported by our NSF SBIR Phase I. Some of the materials they’ve been validating include PLA, PET, polypropylene, and ABS, in both recycled and virgin forms. One of our favorites we’ve been printing with is recycled PET, better known as the common disposable water bottle.

Michigan Tech has also done us the incredible service of creating improved Slic3r profiles for these materials. The profiles are working fantastically on the new Gigabot X in the Houston office, and we’re seeing improved quality of prints thanks to them. Backers will benefit from these profiles, which have improved the overall printing experience greatly.
 
Another thing our team is particularly excited about is that the MTU students were also able to 3D print with multiple sized pellets and have also been experimenting with printing directly with ground-up plastics with success. These results were then submitted to a peer-reviewed journal, and we would love to invite the community to check out the research in Materials. You can also share questions and comments with us on the Gigabot X forum by creating an account and logging in.
 
Testing of Gigabot X is still ongoing and small tweaks continue to be made, but things are moving along well. Over the next three to four months our team will be rounding out testing, cleaning up and finalizing the design and documentation of the machine, and getting the first bots ready for backers. Our team is really excited for the moment that we get to put this technology into the hands of our early adopters.
 
As re:3D R&D Intern Robert Oakley put it, “I’m really looking forward to seeing what people make with it… It’s really cool to see when people start figuring out how to use our printers to make cool objects that we haven’t thought of before.”
Stay tuned for an upcoming post about what Gigabot X was printing in the video above!

Morgan Hamel

Blog Post Author