Solar Pioneers: CoWatt Energy and PowerFunnel

The Lightbulb Moment

When Bill Tolhurst and Cole Brady founded CoWatt Energy in 2013, they shared a passion to become part of the rapidly growing solar power industry, but were looking for a unique opportunity in an already-crowded space. If you have a business then you will probably be looking for some utilities and may need a Utility Bidder, to be more energy efficient. Their big inspiration came from Cole’s background as a 5th generation rancher.

As Bill describes it, there are a lot of innovative things going on in the traditional urban rooftop-mounted space, but almost nothing focused on the unique attributes and needs of rural areas. “Rural customers consume 30% of the total electric power in the US, yet it’s a very underserved market by the solar industry,” he says.

He goes on to explain, “Power is more expensive in rural areas than urban, and usually folks have land. They have the option to put solar on the ground rather than the roof, which is actually the better place for it.” Easier maintenance, no holes or unplanned loads on your roof, and low-risk in the eyes of a firefighter are some of the reasons that ground solar panel installations are more ideal when compared to their roof-mounted counterparts. Many people are starting to buy solar ground mounts to house their panels, if you are unaware as to what these products are, you should check out this guide on the benefits of solar ground mounts.

But ground-mount solar has some long-standing challenges. “We started off doing our deployments the old fashioned way, building everything onsite,” Bill recounts. “It takes a long time and it’s messy – think drilling holes in the ground, cutting steel, and pouring concrete. So rather than being the same guys doing the same thing as everyone else in the space, we started looking for a way that we could be different. “

Bill and Cole began asking themselves the question, how much of the solar deployment process can we move from the field to the factory? Bill uses an analogy to demonstrate the near-absurdity of the way solar is typically done, and how CoWatt is poised to change that.

“Imagine a car manufacturer trying to build your car in your driveway. It doesn’t make sense. The more efficient way is to build the car in a factory and deliver it to you ready to drive. This is the way CoWatt does solar.”

CoWatt’s flagship product, PowerFunnel™, is a factory-assembled and tested ground-mount solar unit that arrives onsite at the customer ready to go. The product is designed so that they nest and stack during transit much like shopping carts, serving the dual purpose of both maximizing space-efficiency during shipping as well as protecting the panels en-route.

“Instead of having to take thousands of individual pieces and put your power system together in the field like a giant erector set, PowerFunnel comes ready to deploy out of the gate.”

PowerFunnel Prototyping

With a solid concept of their product, Bill and Cole started looking for a way to begin the initial prototyping and design of PowerFunnel.

“We were working on a budget, but we also needed something that could produce a fairly sizeable volume.”

With dimensions of four to five feet in certain spots, Bill explained that they chose Gigabot because they can do up to 1/3 scale versions of PowerFunnel, using the same design file they use for the final scale product.

“We used Gigabot to do early iterations, to quickly determine if there were early issues with the design, and to make refinements and improvements along the way. Gigabot allowed us to keep this iterative design process in-house, enabling us to refine and improve our product much quicker than if we had tried to drive it directly into production early.”

Before Gigabot, their prototyping process was much slower and more expensive. They first worked with a third-party company to do full plywood mockups of PowerFunnel.

“The benefit was that they were making us a full-scale prototype, but it was expensive and didn’t allow for rapid design cycles,” says Bill. “We realized we didn’t really need all our prototypes to be full scale, but we did need to be able to take feedback from one iteration and pour it directly into the next to have a continuous improvement loop. Having Gigabot at our office and available immediately rather than going to a service bureau for prototyping meant we could do this very quickly.”

Speed to market was important for CoWatt, and the time savings of using Gigabot made it a no-brainer for them. “It was a weeks-to-days comparison,” explains Bill. “A couple weeks to get a prototype made externally versus a couple days internally.”

But it was the cost side that was even more compelling for them.

“The quotes that we were getting to do a ¼ or even 1/8 scale prototype meant that approach was cost prohibitive if we were going to do multiple iterations,” Bill explains. “The service bureau approach would’ve taken a lot more time and a great deal more money. Gigabot has more than paid for itself just in iterations on the first product.”

And while there are certain aspects of owning a 3D printer that one doesn’t have to deal with when going the third-party route, Bill felt that they were worth it for CoWatt.

“There is a learning curve, but we didn’t find it extraordinary. We didn’t have any prior 3D printing experience. Gigabot uses software tools and components that are well-proven and have a strong support and user community behind them. Overall it was a well-balanced trade-off on just our first product, and now we have the capability to do continuous innovation quickly and inexpensively in-house rather than absorb the lost time and expense of using a service bureau.”

A New Member of the Team

Having Gigabot as what Bill describes as a “captive resource” has proven to be valuable in more ways than just prototyping for CoWatt.

“PowerFunnel is a very visual product: the light bulb goes on when people see it. Being a young company with a brand new product, we needed a way to show it off to people while we were still working on it.”

Rather than relying on PowerPoint presentations and rotating 3D computer models to communicate their product to investors, they used Gigabot to print small, scaled-down versions of PowerFunnel.

“I think that being able to see the product, even scaled down, allowed us to clinch sales and investments,” Bill says. “Gigabot serves the great role of validating ideas quickly and then being able to present them easily to the marketplace and to investors at an early stage when having something tangible can make all the difference in the world of communicating your idea.”

And beyond the investment stage, Gigabot has come into play in yet another new way.

“As we started to go to market, the general public was very intrigued by these small models. We started building 1/16 scale PowerFunnels and using them as handouts for marketing purposes. It gave people a very immediate sense of what the product was about and served as a great physical takeaway.”

Gigabot continues to be an asset as CoWatt, and they see a long-term path for it with the company moving forward.

“This is an industry that moves rapidly, and we’re going to continue to evolve the product to improve performance, so Gigabot has an ongoing role with us,” explains Bill. “Now that we’ve launched the first generation of our product, Gigabot will be a part of the continuous feedback loop.”

A Bright Future

CoWatt announced PowerFunnel in late February, began delivering in late March, and is putting things in place to grow rapidly.

“We have them in everything from ex-urban community acreage homes to hardcore ranching and farming applications,” Bill comments.

“But it’s not only where PowerFunnel is being used, it’s how it’s being used that surprises and delights us.” Bills muses. “Our customers constantly come up with new ways to use our product that we had never imagined.”

One such application not originally on their radar is military.

“The number one cause of injuries and fatalities for our troops in Iraq and Afghanistan is not front line combat, it’s in the transport of water and fuel,” explains Bill. “The ability to generate power without fuel, thereby reducing the risk to our troops – it’s very compelling.”

Since PowerFunnel is a completely integrated solar appliance, one could easily imagine loading 40 units in cargo plane and delivering them to a military outpost, disaster area, or a village in sub-Saharan Africa to start generating power in a couple of hours.

CoWatt is now actively pursuing leads both within the military as well as with international and relief agencies.

More about the PowerFunnel: http://www.powerfunnel.com/

Morgan Hamel

Blog Post Author

Drones & Open Source: Partnering with Local Motors

Below is a re-post of content MicheleAbbate hosted on the Local Motors Blog at: https://localmotors.com/MicheleAbbate/lmdrones-re3d-gigabot/

LMDRONES: re:3D Gigabot 

As part of the LMDRONES projects that you can find on Local Motors, we want to welcome re:3D and their Gigabot 3D printer as they join our LM Drone efforts!

lmre3dunite

May 7th was International Drone Day and the Local Motors Teams, from both Vegas and Chandler, paired up with Matthew Fiedler, Co-Founder and Chief Engineer at re:3D, to bring their Gigabot 3D printer to the world’s first drone port, the Eldorado Droneport, in Boulder City, NV.

mfdronedemo

The all day event included open tuning, demonstrations, races, and freestyle flying.  Matt Jackson, Alaric Egli, and Alex Palmer of Local Motors brought a variety of different drones to take part  in the event.  Matthew began printing with the re:3D Gigabot as soon as it arrived, showing it’s potential and usability for creating parts, wings, and even a full size Wing FPV.

fpvdemo

Stayed tuned for what’s next with the re:3D Gigabot which just made its successful journey from Nevada to Chandler, AZ at the Local Motors Headquarters!

gigabotarriveslmchandler

Gigabot arrives at Local Motors Phoenix facility after participating in the International Drone day festivities at Aerodrome near Las Vegas, Nevada. Engineers at Local Motors are excited to train on the Gigabot and start running their first prints!

gigabotatlm

re:3D Gigabot can now be found at the Local Motors’ headquarters in Chandler AZ!

Books & Bots: The Lab in the Library

Clear Lake City, a community in the Bay Area of Greater Houston, is a name you might not immediately recognize, but it’s the site of a couple things you probably will.

Most notably the home of the historic NASA Johnson Space Center, its Mission Control can be picked out in famous scenes from the 1969 moon landing or movies like Apollo 13 and The Martian. It’s the Houston in “Houston, we have a problem.”

Also not to be forgotten in Clear Lake’s list of places you’d know is our very own office.

Just down the street from the re:3D Houston office is another place putting Clear Lake on the map for technological innovation, one which you might not expect: the Clear Lake City-County Freeman Branch Library.

“This all started back in 2013 when we were notified that the library was named in a will: Mr. Jocelyn H. Lee’s, whose name is on the lab.”

Jim Johnson, Branch Manager of the library, explains how there came to be a tech innovation lab — complete with laser cutter and multiple 3D printers — in the middle of a library in Clear Lake.

“We had no expectation as to how much he might have left us. Once we did find out, I fell out of my chair. It was about $134,000.”

IMG_0006

Evolving to Survive

The library as an institution has defied odds in the face of technology. Fighting the battle against obsolescence, libraries have made it through multiple threats to their livelihood, their survival owed to the nimbleness of their leadership.

“Largely because of technology, libraries, especially public libraries, have had to constantly adapt,” Jim explains. “Once computers became more prevalent and the internet started making headway, libraries as a rule had to adapt in order to stay alive, and not merely just for the sake of staying relevant, but staying relevant to what’s important to people in the way that they acquire information.”

The unexpected and extremely generous donation was an opportunity for the library to do just that.

“We started looking at some trends out there in public libraries around the country and found that makerspaces were beginning to catch interest in communities. Being such a strong engineering community in Houston — from aerospace to chemical — we thought that we probably had the space here to do that kind of thing. We didn’t really see how we could lose if we did it right.”

So they got to work, repurposing the library’s Quiet Room — “It’s hard to imagine a quiet room being needed in a library,” Jim adds — to accommodate some heavier machinery than most libraries are used to having. Next on the list was finding the right person to head the lab.

From Tinkering to Training

 “I was a stay-at-home dad before this.”

Patrick Ferrell was the man brought on for the job of Innovation Lab Trainer. “Before a year ago, the library was a place I brought the kids for storytime. I had never touched a 3D printer until after I found out I got this job.”

img-251x300

A natural tinkerer and hobbyist, Patrick’s professional background in mechanical engineering and physics lent itself well to what the library was looking to do. He now organizes and leads classes on everything from basic circuits and programming to robotics and structure-building with marshmallows and spaghetti.

“Whatever it looks like we need to do in order to cater to the audience we have,” he explains. “Since we’re the only space like this in the county system — and all of Southeast Texas as far as I know — I have a fair bit of latitude and freedom in what kind of classes we offer. Whatever I think looks like fun is what we do. If other people think it looks like fun too, then they come in and we keep offering it.”

His tactics have been working. As Jim put it, “Any success that the space has had is really largely due to Patrick’s influence.”

Walk into the lab and you’ll see what it’s all about. The walls are lined with eye-catching machinery and class creations. A “Cardboardosaurus” T-rex head hangs above their Gigabot in one corner; in another is an outer-space-themed piece of art made entirely using filament from abandoned and failed 3D prints, the masterpiece of one very creative library shelving assistant. Tribute to the original tech influence of the area you can find several NASA-themed 3D prints around the room, among them a several-foot-tall rocket and a model of the Orion space capsule. The laser cutter was my personal favorite — intricate wood, paper, and cardboard portraits adorned the wall next to the machine — proving that two-dimensions can still be cool.

Trend-Following to Trend-Setting

The recent boom in interest in desktop 3D printers allowed the library to tap into the trend and retain its relevancy in the community by getting several printers for the lab.

With a Gigabot in addition to two desktop-sized Makerbot Replicators, they also have the advantage of boasting a print volume unmatched by many local makerspaces. Because of this, they often get called on when a project has hit the size ceiling at another facility.

One of Patrick’s favorite projects so far was one by a local Houston teenager, Nicholas. He had been working with Techno Chaos, a local makerspace, the director of which knew that the library had a Gigabot.

“The director, Mike, called me up and said, ‘I’ve got this kid who’s designed a Freddy Fazbear costume and we’ve printed it on the MakerBot, but he wants to make it full-size. Do you think you could help him?’”

It was the longest print the library had taken on at the time.

“Just the head of the costume was a 44 hour print. But Nicholas was passionate about the project, and his persistence and perseverance enabled him to complete the entire thing successfully.”

What’s made it all worth it for Patrick is seeing success stories like Nicholas’s. “His parents would come in and say, ‘It’s good to see him excited about this kind of thing.’ Finding some outlet for him to be creative in that way was really great. Seeing him so excited, that’s what made it all so rewarding for me.”

And the sentiment is catching.

Patrick told the story of how Nicholas displayed his large-scale print at his booth at the local maker faire. “The director of the Harris County Public Library system was really impressed with his project. When it came time for budget talks, Nicholas and his dad went before the county commissioner’s court to say, ‘This is why libraries are important. This gives our son a place to go to use tools like this.’ The commissioners then asked, ‘How can I get one of these in my precinct?’ They see someone like Nicholas who’s passionate about this, excited about it, and they want to give more young people access to it.”

GEDSC DIGITAL CAMERA

Challenges on the Front Lines of Innovation

Jim and Patrick have seen firsthand what doors the Innovation Lab has opened for the local community, and they understand the value that technologies like 3D printers can bring to the right people.

“Schools are starting to have the smaller printers, so if you’re doing a school project, that’s great,” Patrick explains. “But if you’re doing a personal project, then you’re kind of out of luck. You’re either sending your file off to Shapeways and paying outrageous amounts, or you have to find someone on Hubs, but it’s really hard to find somewhere that can print at the scale of what’s possible on Gigabot.”

On top of large-scale printing, there is another big selling point that sets the Innovation Lab apart from similar spaces in the area and around the country.

“What’s special about our makerspace is that we don’t charge dues or membership fees,” says Patrick. “The only thing you’re paying for is the material you use.”

The fact that the space remains open and accessible to the community is a core tenet of the library. The creative potential there is seemingly limitless — the machinery they have on hand coupled with its accessibility is a recipe for unbridled innovation. But being the first to tread through this territory means the library is crossing bridges as they go; the excitement of being on the front lines of innovation comes hand-in-hand with its challenges.

One thing they’ve encountered is the gap between the public’s general expectation of 3D printing and the reality of the technology.

“I don’t know, you mean I have to design it myself? Can’t you just design it for me? I have a picture, can’t we use that? What if I sketch it out on a piece of paper? I found this picture on the internet, is that good enough?” Patrick runs through the common questions he gets from some people when they first come in to 3D print. “Once we get over that hurdle, then people are more interested and they’ll start printing.”

Another thing they struggle with is demand for large-scale 3D printing, due in part to the gimmicky phase that desktop 3D printing is going through.

“Many people who come in are printing little trinkets. It satisfies the ‘Hey look, I 3D printed something’ desire, and they don’t need to go further,” says Patrick.

People are still figuring out how they can use 3D printing to make something practical. The intent in creating Gigabot was to serve just that purpose: a 3D printer at a scale large enough to print practical, real-world objects rather than just small trinkets.

Patrick speculates that the intimidation factor of the sheer size of a large-scale 3D printer adds to this tendency to avoid Gigabot in favor of their desktop printers. With a steep learning curve for 3D printing in general, expanding the build volume several orders of magnitude certainly can complicate things.

This is something that may prove to be the biggest challenge for libraries looking to open internal makerspaces: how do you tap into and attract the group of people who have a genuine need and use for these technologies? A long-term sustainable plan may not be able to rely on a stream of one-time visitors only there to print their name on a keychain and check a box on their bucket list, not to return again.

What spaces like this need are superusers, people who will return week after week, month after month, because they have a practical use for the machinery.

Lessons Learned for Libraries

At re:3D, we talk to a lot of people — inventors, entrepreneurs, tinkerers — with a clear use for large-scale 3D printing, but a lack of a budget with which to get one. To have access to a space where the only cost is a material fee would be the difference between bringing a product to market and never having the idea leave the drawing board.

A big reason 3D printing has flourished as a tool for businesses is its knack for prototyping. Companies can eliminate the need for third-party designers and injection mold do-overs, saving sizable chunks of time and money in the design and prototyping process. With a 3D printer, you could have a prototype made for as much money as it costs to do a few loads of laundry at the laundromat, in nearly the same amount of time. As Patrick explains, “Gigabot is great for designing a prototype which you want to market or show off to investors.”

Because of this, referrals have been a boon to the library, allowing them to offer their equipment to exactly these kinds of people: the garage entrepreneurs with plenty of ideas but not a lot of ways to make them a reality. Local makerspaces like the one that referred Nicholas — as well as the Houston Inventor’s Association, which also sends people their way who want to print big prototypes — have started to get the word out to their user bases.

In the meantime, the library is forging their own path in this new era of how communities interact with their local libraries. Jim is walking proof of the open and innovative mindset that must come with the librarian territory.

“I think that libraries are more about information and knowledge — a place to keep it and a place to use it — and I think makerspaces are a place to use information that you acquire. This is part of the reason why I think this is an excellent fit for libraries and allows them to remain relevant, not just for the sake of staying relevant, but as a practical place to learn something by doing. I think that hopefully, if other libraries catch on to this, you can easily have libraries remaining relevant not only as a place to absorb and acquire information, but also to use it in a practical way.

This has changed my perspective on libraries being only about books.

IMG_0019

Do you or someone you know live in the area?  Go check out the Jocelyn H. Lee Innovation Lab on the second floor of the Clear Lake City-County Freeman Branch Library.

See more photos of the lab

Visit their website

Check their facebook page for posts about classes

Read more about their lab offerings

Morgan Hamel

Blog Post Author

Made in America: Rapid Prototyping with “GiggleBot”

Below is a re-post of a blog women-owned small business Acoustics First wrote about their Gigabot experiences in Virginia. More information about Acoustics First is available on their website. We’re also honored to feature them on the stories tab of our website. The original post can be accessed here. 

As the summer of 2015 winds down, we here at Acoustics First thought we’d share our latest acquisition with our readers.

Meet the Gigabot™ (or as we call him “Gigglebot”).

This amazing large format 3D printer was developed by re:3D, an outstanding company whose principals come from varied backgrounds which include experience working at NASA, among other things.
The eight cubic foot build volume of this beast makes it ideal for the rapid development and prototyping of our industry leading sound diffusers! We look forward to using this wonderful device on many projects in the years to come.
Watch this short video we made during one of our trial runs. For this calibration test we chose to print a scaled down version of our patented Model D Art Diffusor®.

Who said manufacturing was boring?!?!

~Acoustics First

info@acousticsfirst.com

Gigabot Shapes Sound at Acoustics First

Acoustics First in Richmond, Virginia, USA

Acoustic Diffusers scatter sound and break up hard, contiguous reflections, allowing the sound energy to spread evenly throughout the space without interfering with the sound being produced.  They are used in many different environments: recording studios, audio mixing spaces, loudspeaker demonstration spaces, high-end home theaters, school concert and rehearsal spaces, churches, music venues, and some of the most renowned listening spaces in the world, which have stringent demands on their acoustic environments.  Our diffusers have been used in all of these and more.

listen

We have created a streamlined approach to developing diffusers: we have a virtual design and development process which includes the virtual modeling and testing to determine if it’s meeting our specifications.  However, it is invaluable to have a full-scale printed prototype in hand – allowing for real-world evaluation.  This is where the Gigabot comes into play.  It allows us to have designs in our hand at full scale, to verify our virtual development data under real-world observable and testable conditions.  With live prototypes in hand, we can measure the sound direction and intensity being reflected off the surfaces, which tells us if our development processes were successful, even before we go to production.

GIGABOT-SignD
"We are firm believers in the efficacy of rapid prototyping, and it integrates well in our model of virtualized design, testing, and geometry optimization before manufacturing."
Acoustics First - Atlantic

Our Gigabot has allowed us to reach out further and work on designs that may have been too complicated to realize in any other way, as well as saved us time and money in the design process.

This process has helped the industry immensely, as we can easily prototype and test designs that would have been impractical — if not impossible — to create any other way. This allows for real innovation and process evaluation, which then evolves into designs we can offer to customers worldwide.

-Jim DeGrandis, Acoustics First

Bronze, Full-Scale Dinosaurs using 3D Printed Lost-PLA Casts

Deep in the Heart Foundry in Bastrop, Texas, USA

On Gigabot, we’re currently working on 16 dinosaurs – some up to 40 feet long. We’re directly going from printing finished panels to casting. 3D printing eliminates a lot of steps in the bronze casting process.  Normally the piece is sculpted at full scale, molded, and then cast through the lost wax casting process.

I’ve got our Gigabot running 24 hours a day now. When you’re a small business like us, spending $150k on a high-end 3D printer is a very hard decision to make.  For us, Gigabot was reasonable, we could afford to buy it, and in our situation, it’s putting out the quality level that we need.

Mike Strong

Blog Post Author

Enabling the Future: Gigabot & Open Source Prosthetics

Jon Schull of the Rochester Institute of Technology (RIT) is the leader of a global volunteer network called e-NABLE. Volunteers build prosthetic hands out of 3D printed parts for young children all over the world, or send the parts so kids and parents can take part in the building themselves. The network really does “enable” people by giving them a “helping hand”.

enableevent1
From e-NABLE Prosthetists Meet Printers Event Album

e-NABLE has developed quite a few wrist-activated prosthetic designs, but recently, they have added a mechanically driven arm design to their collection—the RIT Arm, developed by RIT. E-NABLE’s design collection is always growing so it can accommodate a diversity of situations. However, the new arm-activated prosthetics have larger parts than wrist-activated prosthetics, and it so happens that the print beds of the desktop 3D printers that had been in use were too small for some of the parts.

 e-NABLE Prosthetic Recipients

re:3D got wind of the news when several chapters of e-NABLE applied to the Great Big Gigabot Giveaway last summer. Not long after, re:3D’s Catalyst, Samantha Snabes, visited Frankie Flood at the University of Wisconsin and David Levin over the net, while re:3D’s Chief Hacker Matthew Fiedler visited the first e-NABLE conference, also the  first event re:3D ever sponsored. Before long, re:3D had donated a Gigabot kit to e-NABLE.

Jon Schull comments, “With their generous donation, Gigabot is helping create a world in which global communities can turn bigger ideas into bigger and more empowering realities. Sometimes bigger really is better!”

e-NABLE will be putting their Gigabot to good use right away:

“There will be a team of 4-5 students working on this design at the MAGIC ACT lab at RIT this fall and having access to this printer [Gigabot] will make their research and development, prototyping and print times much faster and more efficient.”

(From: http://enablingthefuture.org/2014/08/26/re3d-gifts-a-gigabot-to-e-nable-the-development-of-3d-printed-arm-designs/#more-1305 )

RITArm
RIT Arm

e-NABLE uses a variety of technology, such as exoskeletons and myo-electric engineering. However, mechanically driven prosthetics such as the RIT Arm prosthetic requires no electricity to operate. In situations where recipients have difficulty affording or maintaining devices with higher technological developments, or live in high-risk areas where expensive electronic parts are liable to be stolen, a mechanical arm would be invaluable.

In addition to the RIT Arm, e-NABLE‘s growing collection of prosthetic devices help address a wide array of specific needs. Other devices include:

  • The Raptor Hand
  • The Cyborg Beast
  • The Talon hand 2.X
  • The Odysseus Hand
  • The Second Degree Hand
  • The Owen Partial Finger Replacement
  • And more
e-NABLE Prosthetic Recipients

Sunny

Blog Post Author

Gigabot & Prosthetics: Introducing E-NABLE and 3DMulp

Two new customers have been unpacking and assembling their Gigabots this fall. They are miles apart from each other, yet they share the same dream of using creative new technologies to improve peoples’ lives. They are both using Gigabots in conjunction with other technologies to print open-source prosthetic hands.

Both were also contestants in last summer’s Great Big Gigabot Giveaway

From Bogota, Colombia Francisco “Pacho” Posada, has started a company called Manatí Lab.  He is developing a robotic hand prototype called 3DMulp, which uses myoelectric technology.

Coinciding with Pacho’s delivery,  Jon Schull of the Rochester Institute of Technology (RIT) also received a gigabot kit.  Jon is the leader of E-NABLING THE FUTURE, a network of passionate volunteers using 3D printing to give the World a “Helping Hand”.

Sunny

Blog Post Author

Customer Story : Anything You Can Dream Of

Hi folks, I’m Dave Sanders of protatypical.com and  I’d like to introduce you to the “Flyfish” or at least that’s what it’s called for now and it’s my first project with a 3D printer.

This is just one of many proof concept prototypes that I’ve wanted to make but didn’t really have a good means to do so until now thanks to my Gigabot. The Gigabot’s large build capacity and ease of use allowed this model to be produced successfully as a second draft. As a matter of fact it was one month to the day after I received my machine that the first draft was done in grey (as seen above).

It is a testament to how straight forward re:3D’s assembly instructions are and how easy it is to install and use the software if you consider that I had absolutely zero experience with 3D printing. In the past my greatest design considerations when developing a prototype “what kind of materials can I use to get the desired attributes and how to design the model so that it can be fabricated out of those materials”. Now that I can make any shape I can think of out of plastic it is now possible to get the desired properties out of the design itself. For example the strength to weight necessary for a wing can be designed in through the use of thin skin and walls and an inner honeycomb. Previous prototypes had to be designed around the material used and often required external reinforcements which usually did not enhance the aesthetics of the model.

(A video produced for the patent examiner of this concept vehicle in a flight simulator can be seen here: http://youtu.be/zalwY5rkbKk)

With this new design approach it soon dawned on me that the caveat is that the parts have to be “designed to be printed”. For example the Flyfish which was the easiest of my prototypes to attempt because of its simplicity.

The rudder is a tube shape and when I first ran a print it came into Netfab on its side and then Slic3r layered it that way so the print did work but it wasn’t very good. Once it was rotated to a flat side in Netfab and then sliced that way it printed beautifully. So then it became obvious that the other parts would also need to be “designed to be printed”. The bottom part of the hull could be printed in halves which would lend itself to a good lay up and then glued together however they would need support material added in certain places.

The top piece, “the seat with the top of the shroud and handle bars” because of the overhangs would do best if  layed up longitudinally from front to back however it would also need a “printing stand” designed into the piece itself in order to do that. On the first draft you can see from the previous pictures the stand wasn’t really set up to cut off very smoothly so on the second draft that was taken into consideration as you can see in the images above.

Apparently the need to design the “build stand” into the piece may be unnecessary with this new software that Matthew at re:3D was telling me about called “Simplify3D”. I can’t wait to try it out because it is supposed to allow the user to customize the support material much more readily.

As for future projects the vertical flight capable aircraft is definitely on the list, but the next one on the burner is another concept vehicle that I’ve wanted to build for a long time and now can, have a look:

After that there is a design that I already have a model for in a 3d graphics program that was used to produce posters but would make an excellent show piece for a 3d printing portfolio. One of them will have to be imported into Solidworks, corrected with collision detection, modified to be assembled and then exported part by part to be printed. So sometime down the road when I have the different color plastics to make one it should be fun.