Made in America: 3D Printing Prototypes for Stump Armour Molds

Meet Travis: A Texan, father, entrepreneur, warrior, and inventor.

re:3D first met Travis in Austin last winter as he was prototyping his second version of Stump Armour: an affordable, accessible device he pioneered in order to expand mobility options for bilateral amputees.

As a combat-wounded Marine, Travis is uniquely qualified to inspire solutions to increase maneuverability for other double amputees while reducing back strain that traditional prosthetics can create. By using himself as the test subject and leveraging business insights he acquired in the 100 Entrepreneurs Project and the Entrepreneurial Bootcamp for Veterans (EBV), Travis launched Stump Armour on indiegogo this week.

stumparmourdurty
Stump Armour Mod 1

About Stump Armour

Stump Armour is a round design that connects to traditional sockets to allow for constant surface contact from any angle. Pressure can be directly applied to a terrain without changing position, allowing amputees to roll themselves up independently when preforming activities close to the ground.  Since the round shape can grab from nearly any position, it works great on uneven/irregular surfaces, so the amputee doesn’t need to focus as much concentration on limb placement when compared to other devices.  Travis doesn’t feel Stump Armour is intended to replace full leg or knee prosthetics. Rather, it’s meant to increase functionality with specific tasks.

IMG_1546

Keeping Costs Low

A key tenant of the Stump Armor’s mission is to make devices as affordable as possible worldwide. For this reason, Travis contracted Mike Battaglia & I last January to see if we could 3D print his vision for a Stump Armour’s Modification. Using Simplify3D we were able to generate a raft & support that could easily break off. The completed PLA prototypes printed great and we were excited to give them to Travis, who planned to use the prints to create a mold to scale Stump Armor globally.

IMG_1549
3D printed Stump Armour Mods 3 (left) and Mod 4 (right) cast at SureCast

Prints in hand, Travis partnered with local foundries who guided him through the process of making his own custom mold to cast multiple sets of Stump Armour.  This week we interviewed Travis to learn more about the process he used to create a mold from a print by working with Stevens Art. Below are the steps that he described:

stumparmourmold
  • From a 3d printed prototype made on Gigabot, a silicone rubber mold was created.
  • The print was covered in an releasing agent that was then covered in silicone, leaving an inlet for wax to be poured in later.
  • After the silicone cured, a 2 piece plaster shell was made.
  • Once completed, the silicone was carefully cut with a razor along where the plaster shells come together so it would come apart into 2 pieces.
stumparmourpour
  • The shells were clamped together and hot wax was then poured into the inlet.
  • When the wax hardened, the wax casting of the original print was removed.
stumparmourwaxdone
  • The wax cast was then dipped in a a ceramic slurry and power coat until a hard shell formed.
  • This shell was fired in an oven to harden the cast melt the wax out.
  • Metal was poured in and the ceramic shell was broken off after it cooled.
  • A metal replica of the original 3d print was then ready for finishing!
stumparmourstacked
Stump Armour Mod 2

Using lost wax casting, Travis was able to do his first production run of Stump Armour, which is now available to other amputees on the Stump Armour indiegogo campaign. You can support Stump Armour’s next production run and Stump Armour donations at: https://www.indiegogo.com/projects/stump-armour#/  until July 1st.

stumparmournewlogo
Want to learn more?
  • Email: info@stumparmour.com
  • Web: http://www.stumparmour.com/
  • YouTube: https://www.youtube.com/channel/UCsObkfi6W6x2B6dpZ89_CGg/videos?sort=dd&view=0&shelf_id=0
  • Facebook: https://www.facebook.com/Greens-Machines-LLC-716439551739895/
  • Google: https://plus.google.com/u/2/b/106145756742784523319/106145756742784523319/posts
  • LinkedIn: https://www.linkedin.com/company/10602419trk=tyah&trkInfo=clickedVertical%3Acompany%2CclickedEntityId%3A10602419%2Cidx%3A2-1-2%2CtarId%3A1464716547152%2Ctas%3Agreens%20machines

Samantha snabes

Blog Post Author

Enabling the Future: Gigabot & Open Source Prosthetics

Jon Schull of the Rochester Institute of Technology (RIT) is the leader of a global volunteer network called e-NABLE. Volunteers build prosthetic hands out of 3D printed parts for young children all over the world, or send the parts so kids and parents can take part in the building themselves. The network really does “enable” people by giving them a “helping hand”.

enableevent1
From e-NABLE Prosthetists Meet Printers Event Album

e-NABLE has developed quite a few wrist-activated prosthetic designs, but recently, they have added a mechanically driven arm design to their collection—the RIT Arm, developed by RIT. E-NABLE’s design collection is always growing so it can accommodate a diversity of situations. However, the new arm-activated prosthetics have larger parts than wrist-activated prosthetics, and it so happens that the print beds of the desktop 3D printers that had been in use were too small for some of the parts.

 e-NABLE Prosthetic Recipients

re:3D got wind of the news when several chapters of e-NABLE applied to the Great Big Gigabot Giveaway last summer. Not long after, re:3D’s Catalyst, Samantha Snabes, visited Frankie Flood at the University of Wisconsin and David Levin over the net, while re:3D’s Chief Hacker Matthew Fiedler visited the first e-NABLE conference, also the  first event re:3D ever sponsored. Before long, re:3D had donated a Gigabot kit to e-NABLE.

Jon Schull comments, “With their generous donation, Gigabot is helping create a world in which global communities can turn bigger ideas into bigger and more empowering realities. Sometimes bigger really is better!”

e-NABLE will be putting their Gigabot to good use right away:

“There will be a team of 4-5 students working on this design at the MAGIC ACT lab at RIT this fall and having access to this printer [Gigabot] will make their research and development, prototyping and print times much faster and more efficient.”

(From: http://enablingthefuture.org/2014/08/26/re3d-gifts-a-gigabot-to-e-nable-the-development-of-3d-printed-arm-designs/#more-1305 )

RITArm
RIT Arm

e-NABLE uses a variety of technology, such as exoskeletons and myo-electric engineering. However, mechanically driven prosthetics such as the RIT Arm prosthetic requires no electricity to operate. In situations where recipients have difficulty affording or maintaining devices with higher technological developments, or live in high-risk areas where expensive electronic parts are liable to be stolen, a mechanical arm would be invaluable.

In addition to the RIT Arm, e-NABLE‘s growing collection of prosthetic devices help address a wide array of specific needs. Other devices include:

  • The Raptor Hand
  • The Cyborg Beast
  • The Talon hand 2.X
  • The Odysseus Hand
  • The Second Degree Hand
  • The Owen Partial Finger Replacement
  • And more
e-NABLE Prosthetic Recipients

Sunny

Blog Post Author