Lessons Learned from Starting a 3D Printing Business

We’ve made it to the final post in Darrel Barnette’s series about the 3D printing company he started, Digital to Definitive. In this final video, Darrel shares the biggest lessons he’s learned as a new small-business owner and as someone who’d never done it before.

Darrel had no previous experience starting, running, or even working for a business in the realm of what he built. His career had been big companies, government, and universities – very much a different environment from what he found himself in with Digital to Definitive.

The lessons he’s learned have been invaluable: educating your clients on 3D printing is necessary for better project outcomes, 3D printing can be a finicky technology and isn’t always perfect, and most importantly, relationship-building — before you embark on starting your own business — is crucial.

The whole process has been a journey and learning experience, Darrel says. But for him, the long hours and late nights are worth it.

Have you thought about building your own 3D printing business from the ground up? Let Darrel give you a taste of what it’s been like and see if it might be for you.

Morgan Hamel

Blog Post Author

Gigabot Mods & the Open-Source Movement

If you’ve been following along with the Digital to Definitive Story thus far, you may have noted to yourself that Darrel Barnette’s Gigabot looks a little different than the rest. You’re not imagining it – he has modified the heck out of his bot.

And that’s what we like to see! From the start, we’ve been committed to keeping our products open-source, our parts transparent, and our designs un-patented. Our goal is to encourage Gigabot owners to customize their bots to their needs, and from this, our engineers get to learn what’s important to our community and add priorities to our R&D pipeline. We have users who have added webcams, remote printing capabilities, full enclosures… And then there’s Darrel.

He was an early Kickstarter backer – an engineer with a natural affinity for tinkering and experimenting – and those skills were put to work with his first-gen Gigabot.

We’ll let Darrel take you through the modifications he’s made to his bot and why he did them.

Morgan Hamel

Blog Post Author

This 3D Printing Story Will Blow You Away

We find ourselves now at the third and final leg of the stool making up Darrel Barnette’s business: contract 3D printing for other people/businesses (non-governmental contracts).

He describes it as being rewarding work, because it’s where he gets to give back to others in the form of his 3D printing skills that he’s spent the last several years honing.

Darrel’s first contract printing job as Digital to Definitive was for a group of engineering students at the University of Central Florida who had found themselves in a pickle. They needed a physical prototype of their [spoiler alert] vertical axis wind turbine (the clickbait title should make sense now), hadn’t had luck finding anyone with a 3D printer large enough to take on the job, and had exhausted their own attempts to build a working model.

Darrel came to the rescue, printing the three blades of their turbine all at the same time, standing them up on his Gigabot’s bed to print in one piece.

We don’t want to spoil too many surprises for you, but the project was a success. Check out the video to hear Darrel’s take on this win-win situation.

Morgan Hamel

Blog Post Author

3D Printed Patents

Darrel Barnette’s main focus for where he wants to take his company, Digital to Definitive, is towards the realm of producing the products he’s been mentally developing and cataloging over the last several decades.

Among the products he’s used his Gigabot to design: bracketing for a hydraulic two-wheel drive motorcycle, an adapter for hunters to mount devices to a firearm, and a horseshoe-shaped part that helped make his skeet thrower a lot easier to set up.

He also has noticed that beginning to physically prototype a rough idea he’s had in his mind can often allow him to hone in on what exactly makes his product unique and therefore patent-worthy.

And while Darrel has noted before that contract 3D printing work currently takes up about 75% of his time, the ultimate goal is to move the business more towards working on his own products.

As he puts it, his vision is that he “can just open up the door to my shop and there’s my whole factory.”

Morgan Hamel

Blog Post Author

3D Printing for the Government

Darrel Barnette understands that it may seem strange that the US government is paying other people to do their 3D printing.

But what they understand, he says, is that even an entity as large as them is not exempt from the 3D printing learning curve. “It takes a lot more than just having a 3D printer to produce a 3D printed part,” he explains. “The government realizes that, and they don’t have the time to stop what they’re already doing to learn something new.”

It’s in their best interest at the moment to dedicate their time and human resources to other projects and instead pay outside entities to do their 3D printing work for them. And this is where businesses like Darrel’s come in.

Digital to Definitive’s 3-pronged business model relies heavily on this 3D printing government contract work at the moment – about 75% of Darrel’s time is consumed by it, since he worked so hard with a Bid Protest Attorney in order to win the contract. In the future, he’d like to flip this ratio so that most of his time is spent working on his own projects, but he understands that he needs to, as he puts it, “walk before he runs.” It’s this work that will ultimately allow him to make the transition to focusing most of his time on his own 3D printed products.

Come get a glimpse into the first pillar of the business Darrel has built from the ground up: 3D printing for the government.

Morgan Hamel

Blog Post Author

Digital to Definitive: The Genesis

This is the first video in a series about Digital to Definitive, a company started by Texas-based Gigabot owner Darrel Barnette.

Darrel Barnette was one of the first Kickstarter backers of the original Gigabot four years ago – his bot’s serial number is GB2-028.

He got his Gigabot with no prior 3D printing experience – he had a background in aerospace engineering and a desire to use to use the blossoming technology to create product ideas he had been holding onto in his head.

It took him assembling his bot and starting to use it before he thought of the idea to make a business out of it. Two forces combined to plant the idea in his head.

One, his job at the time had him traveling a lot, which he wasn’t a fan of; and two, he began to see the power of the technology for himself. “Having the 3D printer and the capability of being able to make my own parts for the first time…was just enticing to me,” he explains.

Darrel began to realize that a business opportunity lay in the new Kickstarter product he had gotten for himself.

Entrepreneurs, inventors, tinkerers, dreamers – take note. Darrel’s got a story you’re going to want to hear.

Morgan Hamel

Blog Post Author

Investment Casting with 3D Printing

The following post was written by Todd Ronan. Todd joined the re:3D sales team after hearing a Co-Founder panel discussion on 3D printing & recyclable material at IEEE. From Michigan, parts Northwest, and now Austin (Portland’s si(hip)ster city) he is a Futurist, passionate about evolving technology, dreamer, and enthusiast of fine meade.

The thousand year old lost wax casting process has been revolutionized by the Human-Scale 3D printing of Gigabot

Several re:3D customers have augmented their foundries with Gigabot 3D printers because of the time savings, cost savings, and ability to convert more jobs into happy customers.

In traditional investment casting, a wax model is dipped into a ceramic slurry which is then allowed to dry. The resulting hard ceramic shell is then heated to melt the wax away, leaving a perfect model negative where the wax used to be.

Modern foundries however, have been making the move to 3D printing as a means of creating models for casting. With the ability to use  PLA prints in place of the wax models of old, 3D printing provides a cost efficient alternative method for producing investment casting patterns.

In layman’s terms: hot melted plastic can be printed in any shape, in any size, and allows for a cost efficient alternative to the traditional technique of lost wax casting.

In the past, 3D printers lacked the size to perform life-sized pieces and large format 3D printers, starting at $100K have been cost prohibitive. Enter re:3D’s Gigabot at 1/10th the price. A 3D printer with an 8 cubic foot build space for super-sized 3D printed parts.

Anyone lucky enough to find themselves outside of Austin in Bastrop will notice the beautiful, large bronze pieces of art around the city. These are courtesy of a high-point on the Austin Cultural Map tour, Clint Howard’s Deep In The Heart Art Foundry. Jamie and Clint Howard purchased the foundry in 1999, and have become the premier statuary design and manufacturing business in the state of Texas.

With demand for large pieces the foundry added a Gigabot FDM printer to their arsenal a couple of years ago. Instead of the long curing process associated with wax models, their Gigabot can make any design using standard CAD program, and print HUGE in PLA. It just so happens that PLA burns out just as clean as wax! The cost savings was almost immediate – cutting months and thousand of dollars off traditional casting allowing for increased bandwidth for contract pieces, and substantial revenue increase. With increased demand for printing, Deep in the Heart ordered a second Gigabot printer to keep up with the demand.

Another re:3D satisfied customer: family owned and operated Firebird 3D, located in Troutdale Oregon, recently participated in the Columbia River Highway centennial celebration.  Parts on this Model A (shown below) were Gigabot printed and cast along with this Rip Caswell piece, Devoted Passion, a re-telling of the exploration and creation of this amazingly scenic Pacific Northwest highway.

At Firebird they still use their traditional processes of wax casting but can use wax filament or PLA to print larger bronze pieces. It burns out, leaving a small amount of ash in the shell mold, which can be removed with washing. 3D printed PLA plastic burns out cleanly and is a more durable and more easily handled than a wax part. Chad Caswell (shown below) checks the layer height of their next print. They are, literally and figuratively burning through filament with a cost savings up to 70% by reducing labor!

We just got word Deep in the Heart purchased a 3rd Gigabot to help with workflow and high demand, and now has three 8 cubic foot 3d printers printing (money) while their workers sleep.

re:3D urges: Try a FREE print on us. Find out if Lost Wax (minus WAX + PLA) works for you! Please contact info@re3D.org for additional info on Gigabot 3D printers and lost wax castings!

Mike Strong

Blog Post Author

Making Electric Motorcycle Battery Packs with Farasis Energy

“I got into 3D printing while I was in college doing my electrical engineering degree. One of the things that really got me interested in it was being able to make a box for the electronics projects that wasn’t made out of cardboard and duct tape, which is kind of a trademark of most EE students.”

This is Chase Nachtmann, a Systems Engineer at Farasis Energy.

“That kind of sparked my interest in working with 3D printers, because it’s a way of designing things…and having them come out exactly the way that you want.”

Nachtmann ended up managing the high-end industrial 3D printer at his university, and has now put this knowledge to use post-graduation.

Farasis, based out of the San Francisco Bay Area, makes lithium ion batteries for electric vehicles. They use Gigabot to print parts for a variety of applications throughout their battery pack development process.

Part of that process involves bolting their pack onto a shake table for testing, which puts it through the ringer by vibrating at a punishing 90 G’s sinusoidal in each direction. This particular piece of equipment is pricey to rent time on.

“It’s very expensive, and it costs a lot per hour,” Nachtmann explains. Jackson Edwards, an Applications Engineer at Farasis, jumps in – “Four hundred and fifty dollars.”

Nachtmann continues, “ When you’re doing a custom-shaped box, at least one hour is just spent bolting it onto the table in a secure fashion.”

This is where their Gigabot comes in.

“By printing it, we have a custom box that has the mounting holes already integrated into it – we’re saving a lot of money that way – and we’ve found that printing it was definitely strong enough after we filled the inside with an epoxy body compound,” Nachtmann says. “It saved a significant amount compared to having it machined out of aluminum.”

This machining process was their only option prior to getting a 3D printer. Edwards recounts the process of shopping around for the most affordable option. “We were quoted between two and five thousand dollars for the piece of aluminum, and it also had a 2 week lead time,” he recalls. “Having the ability to make these fixtures in-house is a huge help.”

Contrast this with what it costs them to make the 3D printed version, an extremely dense, 100% infill piece, and it’s a no-brainer. The printed piece uses about five pounds of filament, bringing their cost of printing a custom box to just under $100. On top of that, there’s no lead time: it’s something they can do in-house as needed.

The Product in Action

One of Farasis’s battery packs’ big applications right now is electric motorcycles.

“We just recently completed a build for Brammo’s Isle of Man motorcycle,” says Edwards. “The bikes performed flawlessly and everything went great.”

Another notable name on their customer list is Zero, known for their high-performance electric motorcycles.

“They are right in the middle of their build year right now, making 17 bikes a day,” Edwards explains. “Going to a production-level status with them is pretty fun.”

Zero’s bikes use somewhere between 56 and 140 of Farasis’s battery cells, and the Farasis team has also made some 3D printed test fixtures and parts for their validation builds.

As a true sign of someone in love with their work, Jackson proceeds to wheel out a Zero bike of his own from the back of the office.

“I commute from the Santa Cruz area,” he explains. “I used to commute from Aptos, which was 67 miles one-way…but now I’m a little closer and it’s only a 50 mile trip.”

He explains that the bike has a range that would allow it to do the entire round-trip on one charge, but as he puts it, “it’s nice to have a little bit of headroom.” He opts to plug in at the office while he works.

I get my motorcycle-fantasy fix vicariously, so I leave with the question: how fast does this thing go?

“The fastest I’ve had this one is 105,” Jackson reveals. “It’s a heck of a lot of fun.”

Morgan Hamel

Blog Post Author

Meet Relay: Robotic Room Service, With a Smile

If you find yourself staying at a hotel in the San Francisco Bay Area, there’s a good chance you may see a new face wandering the halls. His name is Relay, and he’s the friendly service robot who will be back…to deliver you that toothbrush you forgot at home.

Relay is the brainchild of Savioke (pronounced Savvy-Oak), a young robotics startup aiming to bring service robots to industries like hospitality, offices, and healthcare. 

Currently in several different hotel chains around the Bay Area, Relay is freeing up his human coworkers to do the kinds of things robots can’t (yet), while he takes care of things like room deliveries (and cracking jokes or taking selfies, if you’re so inclined).

Room Service with a Smile

Adrian Canoso is Head of Product and Design at Savioke, and he’s been with them since the start, through the long road of testing and prototyping to get Relay to where he is today.

“We take for granted that we don’t bump into stuff – normally — when we walk around,” he explains. “From a robotics perspective, that’s a lot harder to do.”

With safety at the core of the product, Savioke had to ensure that Relay was able to maneuver through spaces with not only stationary objects, but also us unpredictable humans. A big part of this, Canoso explains, is rooted in peoples’ ability to understand Relay.

“When people look at robots and robots aren’t communicating in the right way, they might think it’s creepy, because they don’t know what it’s thinking,” he says.

What this translates into is a lot of research and focus on design. From Relay’s touchscreen face which always tells you “who he is, what he does, and what he’s doing,” to the slight upward curve underneath his screen which forms his smile, every detail has been carefully thought-out.

“These little things came out of a ton of research that we had done in the past,” Canoso explains. “We’ve worked really hard to make sure we came up with a really simple way for Relay to communicate what he’s thinking. That helps people to empathize with [him].”

This empathy serves the dual purpose of helping people to become comfortable around the new robotic face, as well as aiding Relay in his tasks. His “pet-like form,” for example, helps Relay to easily enter elevators – people will hold the door for him, because, as Canoso puts it, “He looks kind of cute.”

And it’s true: from the friendly sounds he makes, to the happy dance he does when you give him a good rating after a delivery, Relay is a decidedly good-guy bot.

“That’s at the center of our product: making sure that people feel comfortable around our robots,” says Canoso.

The Prototyping Problem

As a young startup with an in-development product, Savioke needed the ability to prototype rapidly and often. As anyone who’s been in this position can attest to, options for young, often cash-strapped companies can be limited and far from ideal. 

“We didn’t want to have to force ourselves into low-volume manufacturing,” Canoso says.

He explained that the options they faced for prototyping were between vacuum forming or high-end 3D printing services that were prohibitively expensive.

“From a workflow perspective, we needed speed, and if we had to go with another vendor – an external source – for making these parts, I think cost would’ve been just way too prohibitive,” he recounts. “We wanted to make sure that we were iterating in-house on almost a daily basis.”

With the form of their robot in near-constant evolution, they needed the ability to stay nimble from a design perspective.

“We wanted to make sure that we were doing one-offs…committing to tooling at the time just didn’t make sense at all from a financial or time-frame perspective,” he explains.

DSC_0074

The Birth of Relay

Canoso’s past with 3D printing stretches back to grad school where he got his feet wet with a high-end, industrial 3D printer.

“It was pretty cool to use that to prototype projects that I was working on, but the problem is that it was really time-consuming, really expensive.” He recalled the beauty and also frustration of working with the high-quality, powder-based 3D printer. “You’d go to grab your model out of the printer and there’d be nothing there because there was some error in the mesh.”

At Willow Garage, the robotics research lab out of which Savioke was born, they had a similar 3D printing setup to Canoso’s university experience.

“We had a lot of resources at the time, so we could afford to get a really expensive printer, and we thought that was a good choice.” But Canoso explains that the process was time-consuming, parts took a lot of post-processing to get a good finish, and oftentimes they would warp.

“It turns out,” he says, “that as an industrial designer that’s doing a lot of prototyping, FDM is actually a really great process.” From the material options, to limited post-processing and minimal warping, they found it to be ideal for robot prototyping.

At Savioke, they began the prototyping stage with foamcore, ultimately graduating to CAD and 3D printing when they began to nail down the design of the robot. When they outgrew the build volume of the desktop printers they were using, they began searching for something that could accommodate the two-foot-plus-tall shell of their robot.

“That’s when we saw the Gigabot show up on Kickstarter,” Canoso recounts, “and we were like, ‘Oh my God, that’s really what we need.’”

For the first batch of prototypes for hotel pilots, Savioke used Gigabot to print the full outer torso panels of the robots, achieving a final-manufactured look through some in-house post-processing. “The impression we consistently got is that we used a more elaborate process,” Canoso commented.

They also use Gigabot to print the entire bottom portion of the robot: a top and bottom piece which encase the mechanical base. “Those pieces were printed in one shot, which was awesome,” Canoso remarks. “[Gigabot] allowed us to just iterate as fast as we needed to.”

To date, Savioke has completed over 15,000 fully-autonomous deliveries, and is expanding to more hotels in the coming months.

You can follow Savioke at @savioke, and Adrian at @Adrian_Canoso

Morgan Hamel

Blog Post Author

Reconstructing Aircraft Using 3D Printing

 Taking Flight with an Idea

“I thought about this for about a year and a half before I finally pulled the trigger.”

Ben Gimbert was an airplane mechanic for 32 years before he got a Gigabot and jumped into his next career foray.

“I went to a government boneyard out in Arizona where they have whole decommissioned airplanes; I wanted to collect ejection seats and flight sticks. That’s how this whole thing got started.”

The particular site that Ben went to is AMARG, the 309th Aerospace Maintenance and Regeneration Group. It’s an incredible space to look at photos of – rows upon rows of neatly arranged airplanes that look like toys organized by an obsessive-compulsive child. The facility typically has around 4,200 aircraft onsite at a time.

“They’ve got airplanes, helicopters, missiles… Once the planes are deemed for destruction, they’re sent to the smelter across the street,” Ben explains. “It’s kind of like watching your favorite sports car get chewed up.”

Ben isn’t the only one who feels this way. There are groups of aviation fanatics who snag portions of planes – or entire aircraft – before they meet their fiery demise. And this is where Ben saw his opportunity.

Giving Wings to a New Career Path

“There’s a gentleman up in Rochester, New York who has an Egress cockpit simulator, primarily used to train pilots how to eject from an F-4. His was the worst of the worst – it had stuff pulled out and cut off of it. He was missing some key parts for the ejection seats in the cockpit.”

Ben explained that this gentleman’s options for the reparations were limited. “Ejection seats from that era had analog mechanical timers on them; they’re more complicated. There were timers and brackets that he didn’t have on his seat.”

The only option was to find another complete seat from which he could pull parts, something that was going to be difficult and costly – “in the thousands of dollars” – for just a handful of parts.

Ben just so happened to have one of these seats, so, using his as a reference, he modeled all the necessary parts in CAD and started printing them out on his Gigabot.

ejection seat
The ejection seat Ben reproduced parts from

“I double checked the fit on my seats and sent the parts over to him,” Ben recounted. “He was just tickled to death that this machine could make parts like this.”

Ben continues to use his Gigabot to help out fellow aircraft enthusiasts recreate cockpits, printing parts for ejection seats, gun sights, and static scopes.

OLYMPUS DIGITAL CAMERA
F-4 Phantom cockpit which includes a scope Ben reproduced

It’s a whole niche market, he explains. “There are people who have cockpits they use for photoshoots. They have the flight suits and helmets, and at air shows they’ll dress you up and take a photo of you in the cockpit.”

Ben’s F-4 Thunderbird cockpit photo setup at an airshow

His Gigabot also fuels his own hobby – Ben has an F-86 Sabre for which he is making parts.

Ben’s F-86 Sabre

Large-Scale 3D Printing for a Niche Market

Ben had originally placed an order for a smaller, desktop 3D printer before changing course for Gigabot.

“Most of the other printers were just too small for what I wanted to do without having to stitch stuff together. They were too small and too expensive for what they are, in my opinion,” Ben explains

“I didn’t want to be making trinkets. What I like about the Gigabot is it’s big,” he says. “I guess everything’s bigger in Texas.”

And for what Ben was looking to do, there really wasn’t another option – it was either 3D print the parts or fashion them by hand, something he hardly even considered as an option.

F-4D Gunsight/Radar Scope

“If I had to hand-make one of these parts, it would just be way too many hours,” he explains. “It would be so tedious for an amount of money that wouldn’t make it worth it.”

Ben picked up CAD just so he could design these custom parts and print them out. “They’re not objects you’re going to find on Thingiverse,” he says. And despite the learning curve of CAD and 3D printing, it was still a no-brainer for him.

A gas initiator Ben fashioned in CAD for a client that could not find an original unit. On the right is the original, and on the left is the one printed by Gigabot

“You’re saving a good half on time and money using Gigabot rather than doing this by hand.” He takes a deep inhale and sighs, “If I had to make one every time by hand, I probably wouldn’t even make two of ‘em. I mean seriously.”

As for how Ben feels about his new entrepreneurial path in life, “I just found a need and figured out how to solve it,” he explains. “This has happened to me before: I get an idea, and before I can act on it, someone else is doing it. And they’re the one making money on it and you’re not.”

His next challenge? Expanding the niche, he says. “I want this Gigabot running around the clock.”

Morgan Hamel

Blog Post Author