On Beer and 3D Printing: Tap Handle Musings Part 1

If you have been following our social media accounts or exploits online, chances are you’ve witnessed multiple references to craft beer & roadtrips. We’ve also been guilty for using a #beerforscale next to our human scale 3D prints.

Chief Hacker shows off his super-sized 3D printed GE engine downloaded from Thingiverse using a Shiner Bock for scale.

As we’ve connected with makers across the globe, we’ve encountered a disproportionate number of other 3D printing enthusiasts who share a passion for home brews. Over stouts & porters (and an occasional hefewiezen), we began to muse with tap masters worldwide on the synergies between the additive manufacturing and brewing cultures, which revealed multiple overlaps.

Below are some similarities we’ve witnessed between our industries:

  • Brewers are makerpros too
    • Many of the tap masters we chatted with shared that their career started out as a hobby. A bucket and oversized pot quickly was upgraded to a small still, which serviced crowdsourced recipe requests for friends and friends-of-friends. Like so many of us now running 3D printing companies, successful breweries are an amalgamation of passion, friends, curiosity and a little hardware hacking.
  • Both movements are changing policy
    • As state and federal law restrict scaling microbreweries, many beer enthusiasts such as Raise Your Pint in Mississippi suddenly found themselves immersed in state politics as they lobbied for deregulation. 3D printing startups sympathize as we struggle to make sense of lack of industry specific export codes, open source policies, debate around the ethical use of 3D printers and the slow realization that the government is unprepared for exporting personal factories worldwide. An artifact of explosive growth, participants in both the craft beer & the 3D movement have accidentally found themselves immersed in policy & regulatory discussions.
  • 3D printing and brewing is as much an art as a science
    • While both of our industries are ultimately contingent on chemistry, whether it be polymers or yeast, little academic rigor has been applied to craft brewing or FFF 3D printing. We therefore depend on instinct and basic scientific probing to ensure consistency & quality.
img_3436
  • We’re building factories
    • Whether you’re making a bottle of beer or a Gigabot, once you commit to commercialization (even in limited quantities), you’re forced to stand up shipping, compliance, and production. Within a few months, a small-scale factory emerges, with an impressive infrastructure investment (usually from the founder’s pockets).
  • We need significant capital outlay, that often is accomplished without a VC
    • With the exception of growth stage breweries (e.g. Laganitas), most microbreweries are intentionally small. As non-traditional business owners we chatted with borrowed from their 401K’s, installed the best investment apps uk, and got loans from families to bring their dream to reality. Not surprisingly, most founders we encountered were in their 30’s, 40’ or even 50’s, having accrued a nest egg to overcome the risk and initial expenditures. Breweries, like 3D printing start-ups tend to gravitate to non-dilutive options for initial funding and seemed more concerned with making a sustainable business than posturing for quick acquisition.
img_0634-3
  • Our cultures represent a lifestyle & community is core to our mission
    • Let’s face it.  No one wants to drink alone. Concurrently most hobbyists are only as successful as the last 3D print they shared publicly. Start-ups in both domains have calendars full of events to engage enthusiasts of all levels, because the heart of what we do includes sharing and dialogue. Yoga and trivia nights are no stranger to local breweries. Similarly most 3D printing start-ups host regular meet-up and grass roots efforts to provide education, good WiFi and a place to swap ideas.
img_1640
  • Tap handles make a perfect 3D printing project for budding breweries
    • Stay tuned for Part 2 of our Beer & 3D printing series!

~Samantha

Investment Casting with 3D Printing

The following post was written by Todd Ronan. Todd joined the re:3D sales team after hearing a Co-Founder panel discussion on 3D printing & recyclable material at IEEE. From Michigan, parts Northwest, and now Austin (Portland’s si(hip)ster city) he is a Futurist, passionate about evolving technology, dreamer, and enthusiast of fine meade.

The thousand year old lost wax casting process has been revolutionized by the Human-Scale 3D printing of Gigabot

Several re:3D customers have augmented their foundries with Gigabot 3D printers because of the time savings, cost savings, and ability to convert more jobs into happy customers.

In traditional investment casting, a wax model is dipped into a ceramic slurry which is then allowed to dry. The resulting hard ceramic shell is then heated to melt the wax away, leaving a perfect model negative where the wax used to be.

Modern foundries however, have been making the move to 3D printing as a means of creating models for casting. With the ability to use  PLA prints in place of the wax models of old, 3D printing provides a cost efficient alternative method for producing investment casting patterns.

In layman’s terms: hot melted plastic can be printed in any shape, in any size, and allows for a cost efficient alternative to the traditional technique of lost wax casting.

In the past, 3D printers lacked the size to perform life-sized pieces and large format 3D printers, starting at $100K have been cost prohibitive. Enter re:3D’s Gigabot at 1/10th the price. A 3D printer with an 8 cubic foot build space for super-sized 3D printed parts.

Anyone lucky enough to find themselves outside of Austin in Bastrop will notice the beautiful, large bronze pieces of art around the city. These are courtesy of a high-point on the Austin Cultural Map tour, Clint Howard’s Deep In The Heart Art Foundry. Jamie and Clint Howard purchased the foundry in 1999, and have become the premier statuary design and manufacturing business in the state of Texas.

With demand for large pieces the foundry added a Gigabot FDM printer to their arsenal a couple of years ago. Instead of the long curing process associated with wax models, their Gigabot can make any design using standard CAD program, and print HUGE in PLA. It just so happens that PLA burns out just as clean as wax! The cost savings was almost immediate – cutting months and thousand of dollars off traditional casting allowing for increased bandwidth for contract pieces, and substantial revenue increase. With increased demand for printing, Deep in the Heart ordered a second Gigabot printer to keep up with the demand.

Another re:3D satisfied customer: family owned and operated Firebird 3D, located in Troutdale Oregon, recently participated in the Columbia River Highway centennial celebration.  Parts on this Model A (shown below) were Gigabot printed and cast along with this Rip Caswell piece, Devoted Passion, a re-telling of the exploration and creation of this amazingly scenic Pacific Northwest highway.

At Firebird they still use their traditional processes of wax casting but can use wax filament or PLA to print larger bronze pieces. It burns out, leaving a small amount of ash in the shell mold, which can be removed with washing. 3D printed PLA plastic burns out cleanly and is a more durable and more easily handled than a wax part. Chad Caswell (shown below) checks the layer height of their next print. They are, literally and figuratively burning through filament with a cost savings up to 70% by reducing labor!

We just got word Deep in the Heart purchased a 3rd Gigabot to help with workflow and high demand, and now has three 8 cubic foot 3d printers printing (money) while their workers sleep.

re:3D urges: Try a FREE print on us. Find out if Lost Wax (minus WAX + PLA) works for you! Please contact info@re3D.org for additional info on Gigabot 3D printers and lost wax castings!

Mike Strong

Blog Post Author

IMTS 2016 – My Top Picks

Below is Gigamachinist Steve Johnson’s blog on IMTS 2016:

IMTS 2016 - My Top Picks

A few months ago, IKO International, asked re:3D if we would like to showcase Open Gigabot at their booth at International Manufacturing Technology Show (IMTS) 2016 in Chicago. It would feature their linear rail system incorporated into our printer design, and would allow us to showcase our 3D printers among some of the world’s top manufacturing companies. Naturally, re:3D was thrilled to accept the opportunity to display at our first IMTS.

I have been running the machine shop at re:3D for just over a year, so my experience with 3D printing is still rather shallow, but my experience in manufacturing spans almost 25 years. And because I have a passion for mechanical design and manufacturing, IMTS is to me what Santa’s Workshop is to a 6 year old child. So when re:3D asked me to represent our team at IMTS, I was nervous and giddy all at once. Joining me to man our booth would be Jeric, an engineer from our team well versed in 3D printing. (and born around the time I entered the manufacturing industry) I was glad I would have his knowledge base to learn from and lean on during our time presenting Gigabot.

imts-1

With only 2 of us at the largest manufacturing show on this big blue marble we call home, it was very difficult to break loose from the re:3D display to visit other booths, and soak up some of the amazing displays being shown throughout the 1.37 million square feet of display space. We might slip out periodically, one at a time, to view a few booths close by, but for booths further away, we would need to arrive a  couple hours before the show opened to the public, so that we could freely view as much as time would allow.

imts-4

Over the course of 6 days presenting, we were able to meet hundreds of Gigabot admirers, and also meet several other companies who made a big impression on me in some way or another. These were my top 10 favorite booths from IMTS 2016, and why:

There are a lot of companies in the CAD/CAM market. Most, are simple CAM packages which aid the user in creating quick code for simple machine operations, and are reasonably inexpensive. A few, such as Autodesk, CATIA, Mastercam, and ProEngineer have gained a reputation as robust software packages capable of handling the most complex modern machine programming toolpaths in multi-axis environments. These companies also charge a premium price for their packages. And then there is BobCad. The best of both worlds. A high functioning CAD/CAM system at a price even a small business owner can easily manage.

Perhaps I am biased, as I use BobCAD version 28 in our shop at re:3D, to program the machines that make each part for every Gigabot 3D printer we sell. But there is no bias in saying that BobCAD has come a long way, and can compete with the big players in the CAD/CAM market at a price that makes the cost of other software packages seem bloated. And it is a standalone software. Create your solids, straight to code output in one software.

The folks at BobCAD had a relatively small booth in comparison to many of their competitors, but what it lacked in floor space, it made up for in content with a great staff of techs giving demos, and plenty of free swag. No nonsense high end results, and priced for everyone. Enough said.

imts-autodesk

Autodesk is well known in the manufacturing industry as a leader in design software. So it is probably no wonder that they made my top 10. However, I did not pick their booth on the merit of their software, but rather for the content of their presentation. The Autodesk booth was the first thing you saw as you entered the East building from the skybridge. A massive booth among other software companies, Autodesk designed their area as a presentation stage. And it drew in the crowds all week as they did presentation after presentation on every topic you can think of in regard to manufacturing. (The free beer and coffee may have helped as well) But the one presentation that drew me in the most was a speech and Q&A with none other than Titan Gilroy, owner of Titan American MFG. For me, Titan is a true American success story that exemplifies the spirit of manufacturing excellence, and the drive to constantly improve our process. The desire to continually learn and adapt to an ever changing industry. And Titan shares his motivation and knowledge with the world via Youtube, as well as other appearances such as this. Having Titan speak from their booth was, in my opinion, a wise choice to connect to a broad demographic of manufacturers, big to small, and young to old. I made sure to get a signed poster for our team as well.

imts-2

This one was a split decision. Even before heading to IMTS, I had heard that Mazak had something special on the horizon. And upon arrival, I quickly heard that DMG Mori was also following the same path. So a visit to each booth was a must.

I remember back in 1997 I attended a tool show in Houston where I was first exposed to 3D printing. The concept absolutely blew my mind. But as additive manufacturing began to gain more attention, I heard the rumbling and grumbling of people in my industry doubting its validity in the manufacturing environment. As time passed and the technology expanded, people on the manufacturing floor began to fear that 3D printing was progressing so much that they believed it would end the need for machinists, forcing us into an early retirement, and the end of a career field. So my visit to both the Mazak and DMG Mori booths was a calming to all the fears of the past, as I witnessed the first two machines to meld additive manufacturing with subtractive manufacturing. Each company presented a mill center capable of CNC milling combined with 3D metal printing. These two machines are not eliminating machinists, but instead, redefining machining, just as the CNC machine did to conventional manual machining. Barriers are being broken down, and new possibilities are being realized. Parts that were previously impossible to make are now a reality. Material requirements are being decreased. These two booths excited me about the future of our industry, and I left envisioning what will be possible tomorrow.

imts-8

This booth made my list, in spite of my previous bias. I had seen internet postings about this relatively new company, and their milling machines. I quickly formed an uneducated opinion that they were selling snake oil. So, when I visited their booth I was bound and determined to prove to myself that they were selling a toy, not a tool.

I could not have been more wrong. Yes, it hurts a bit to admit I prejudged Datron, but I also feel it is necessary to set the record straight. Here is a new company that took the basics of what a milling machine does, and threw the standard out the window to design something entirely new and fresh. From the 6hp spindle turning 60,000rpms at a feedrate of 866ipm, to the ethanol coolant mister, to the most innovative vacuum chuck I have seen yet, they did not fail to impress me. Add in a huge touch screen control that has no physical keyboard, and a camera based part zero system that makes setups almost instantaneous. Have they created the perfect mill? No. The machines still have a rather short Z stroke, and a very limited tool diameter capability. But what they have created is totally outside the box from traditional mill design. I do think their asking price on these machines is a bit high, but all things considered, I was pleasantly surprised with this company. Way to go Datron. I am now a big fan.

When we speak of 3D printing, it is often difficult for people to envision a legitimate use for it. And most people instantly think of the tiny desktop printers that make tiny knick knacks to display. We at re:3D envisioned something bigger. A machine capable of building real world useful items and accessible to the masses. And then there is Oak Ridge National Laboratories. They took that concept to a whole new level. Upon entering their booth my eyes caught not only a Jeep on a completely 3D printed chassis, but a Cobra as well. Both are fully functional full sized vehicles. This was real world implementation of fused filament printing at it’s finest. But then it got better as I saw the office right behind them… which was also 3D printed. Yes, a full sized printed office structure. When you talk about making a big first impression, this should be the litmus for said impression. I am really looking forward to what they do next.

For people involved in additive manufacturing, Stratasys is a household name. They have been making impressive machines for years. Although a bit pricey, they are a solid company with a quality product and great features. At their booth this year, we got a chance to see a new printer utilizing a 4th axis rotary as well as a multi-axis printhead. This platform allows them to print parts without the worry of support material or overhang, and, less importantly, is mesmerizing to watch. Gone is the concept of extruding layers in a single plane.

I am told that they had a printer there that was capable of printing infinite length prints as well. I wish I had seen that and could report on it as well, but I apparently had tunnel vision aimed in on the multi-axis platform the entire time we were in their booth. Sometimes you miss stuff. It is a huge show. Even without seeing that printer, I felt this booth deserved serious props for WOW factor.

This one makes the list, not only for the Fanuc booth itself, but also for the massive presence their product had in so many other booths, including the IKO booth we were showing Gigabot in. Yes, if you have been in manufacturing long, you know who Fanuc is. From CNC control systems to robotic arms and delta systems, Fanuc has their hand in everything. Our booth featured a delta style part sorter that used IKO bearings in its assembly. Numerous other booths featured Fanuc robot arms performing various tasks involved with their product. And then there was the Fanuc booth. We witnessed a completely automated production line of mills running swag parts. Robots loading mills for first op, unloading, flipping, and reloading for second op, and then unloading, washing, and delivering parts as a finished product. All aspects of the line were Fanuc products. A fantastic display of the large variety of products they offer. And, of course, I cannot fail to mention the one item that had people talking all week. A massive robotic arm that was holding a brand new Fanuc Yellow Corvette, and manipulating the car all over the back corner of their booth. Yeah, that was a pretty sweet display of dexterity and power.

A teamed up booth much like our own, the Solidcam booth was hosting MachMotion for this show. Solidcam is a machine programming software that runs native in Solidworks, and MachMotion is a control company who has their hands in many projects. For the Solidcam booth, they were showing a MachMotion mill control that ran Solidworks and Solidcam at the control, allowing on floor programming in a design environment. Solidcam was also giving away a pretty nice 4 wheel UTV at their booth, which they refused to draw my name for. But I won’t hold that against them. And MachMotion also had one of their control systems on an engraving machine in another booth that made me geek out for a bit. The MachMotion control allowed us to text the machine from any cellphone, at which point the machine would ask us what text we wanted to engrave. Reply with a line of text, and the machine would process our request by engraving our requested text on an aluminum thumb drive. Custom made swag is always the best swag.

imts-3

We cannot make this list without giving a shout out to the company who made it possible for us to attend IMTS in the first place. IKO welcomed us into their booth as a display of their linear rail system at work. We shared space with a couple other machines sporting IKO equipment. But the show winner for IKO… the machine that stole the limelight all week long… a simple claw machine built by a couple IKO engineers and salesmen, utilizing IKO ball screw systems. Loaded with IKO swag such as flashlights, notepads, and Rubik’s Cubes, the line to play the IKO claw machine stayed full all week. We may have gotten a bit jealous that it got more visibility than Gigabot, but in reality, we lined up a few times to play as well. Hey, it was fun.

For Inspiration and Recognition of Science and Technology – An organization founded by Dean Kamen, had a huge presence on the C hall, and brought in students from 38 states and several countries to be a part of IMTS. This organization also had several activities planned for the students, which helped inspire these young minds to move forward to become the designers and manufacturers who will shape our future. I have to list them as my number 1 pick, as this organization is building our future, and helping our next generation to dream bigger, and reach beyond the stars. Thank you for all that you do.

Happy Printing!

Steve Johnson

Blog Post Author

Improving Your Manufacturing Equipment with Gigabot

Below is Gigamachinist Steve Johnson’s second blog on 3D printing for re:3D’s Gigabot fabrication shop.

Improving Your Manufacturing Equipment with Gigabot

by Steve Johnson

Sometimes, you have a product that works, but there is a way to improve it to make it work better.

A few months back, we added a 4th axis rotary table to our mill at re:3D. It has allowed us to begin to capitalize on the full milling envelope of our machine, allowing us to mill as much as 8 times more parts per program cycle, and reduced the need for multiple operations on some parts.

We quickly found a weak spot in our rotary table though. The table was designed without any seals to prevent shavings from entering the gearbox. As a result, we have had to disassemble the rotary table twice now in order to clean out aluminum shavings that had bound up in the worm gear. We decided this time, that we needed to find a solution for this issue, to keep our mill up and running longer between needed maintenance.

Once we had the rotary table apart, we found the area where the shaving were getting into the gearbox. There is a groove in the back of the table section, and a boss on the rotary body that rides inside the groove. But the fit between the two, once assembled, is very loose, and will allow anything smaller than .1 of an inch to pass through. Obviously we needed some type of o-ring, or gasket in order to seal this gap, without creating unwanted friction.

A few quick measurements, and Matthew headed to the computer to create a short profile on Solidworks, that would fill the gap. Using Ninja semi-flex filament from www.ninjatech.com, we made a first print of that profile on Gigabot, and took it to the shop to test fit. It was a little tight, so back to the computer to adjust a couple dimensions, and another short profile print. Once we had the right fit, we revolved the profile into a full circle on Solidworks, and 15 minutes later, we had a custom made flexible gasket that seals the rotary table from chips without creating drag on the axis motor.

gasket4

We found a problem. We imagined a solution. And with Gigabot, we made it a reality today.

gasket5

Now we are back up and running so that we can manufacture the parts for YOUR new Gigabot.

Happy Printing!

  • steve@re3d.org

The Pros & Cons(iderations) of Toilet-sized 3D Printing

3D printing large objects is a very rewarding experience; it is also an introduction to a magnified set of challenges that a user will face when designing and realizing his or her prints. To keep things simple, we’ll review some of the pros and cons of large-scale printing in a list format.

Pros:

Human Scale

The driving force behind Gigabot being so large was printing objects at a Human Scale. But what exactly does that mean? In our view, Human Scale means items that are sized to be useful and helpful in everyday life. An example of this is a compostable toilet, which has been one of the prints that we’ve always considered to be of utmost importance. At this scale, furniture, as seen below, can be printed. Tables, lamps, and even low cost-prosthetics all fit into the idea of Human Scale Prints.

Practical Functionality

In addition to the Human Scale benefit of large format 3D printing, Practical Functionality is also a key aspect. For example, to scale models of engine parts, hand-held devices, toys, newly designed mechanical components, and so many more items are useful for sales and visualization purposes. When the model is smaller than the real-world equivalent however, it is difficult to fully appreciate tolerances, and nuances in design. With a large volume for printing, items that are full sized can be fabricated and used for fit-checks, actual function, and testing purposes.

Strength

With larger prints that are a single object, greater strength can be achieved. This is due to the perimeters encapsulating the entire object and passing loads throughout without disruptions in the path. The Infill that is inside also assists in taking the load and spreading it through the entire print and thus reducing stress concentrations. This allows prints to be very strong in compression, and to a lesser extent, tension. Depending on the infill percentages used on a print, the forces necessary to cause damage may be well in excess of what an average adult could exert.

No Assembly Required

There are many instances where 3D printed objects are glued, melted, or mechanically held together to form larger pieces. One of the wonderful characteristics of having the ability to print in large format is that pre- and post-processes such as those can be eliminated. When printing smaller pieces for an item that will be assembled, there may need to be design work to add pegs and keys assist pieces in locking together. On the backend, using adhesives and other methods are time consuming and not always simple. The ability to fabricate a large object in one go helps to simplify the manufacturing process and save time.

Expanded Creativity and Capability

Art is on area where 3D printing shines when scale in involved. So many more beautiful details can be expressed or replicated in a piece that is large. For example, there have been several artists who have made pieces over 20 feet long by incorporating 3D printing into their skillset. Sculptures of dinosaurs with incredible skin detail have been cast by a lost wax process after using 3D printed pieces as the base of the work. (A process, I like to call Lost Plastic instead!) Full size busts of persons have been printed as well as spaceship simulators and functional robots. The possibilities for creating new items is endless!

Cons(iderations)

Importance of Bed Leveling

Keeping the bed of a 3D printer level is one of the most important aspects of getting a piece to be made well. Without proper leveling, corners may warp, objects may not stick to bed, and objects may have poor surface quality. This is true for any size printer, but it becomes more important when a larger surface is used. Imagine a 5 degree angle from one point of a bed plate to the other. If the bed plate was 15 inches long, the difference in height on the other side of the bed plate would be 1.31 inches. If the bed plate was 30 inches long, that vertical differential is now double at 2.62 inches which is much more dramatic. It demonstrates the importance of minimizing any angles and ensuring that the bed plate is as flat as possible

Learning New Slicing Profiles

One of the most complicated parts of 3D printing is learning about all the settings that are involved with making an object. I’ve listed several here, although there are many more that can be adjusted for any print. Learning how to adjust these setting for new sizes takes a little bit of practice and can make all the difference between a nice print and a great print.

Number of Solid Bottom and Top Layers

With smaller prints the number of Solid Bottom and Top Layers is typically two or three, depending on the infill percentage. Usually a decent number is about 15% which gives a nice structure inside the print and means that the solid layers will not sag very much when being printed on the infill. With larger prints, however, infills can at times be down to 1-2% leaving up to an inch between supporting infill. The first solid layer will usually droop between these sections and the next layers may not have good finishes. Increasing the number of solid layers will allow the print to have a much nicer finish as the bottom layers support the ones after them.

Number of Perimeters

The number of perimeters typically also increase with an increase in print size. Having this number go up allows a print to be stronger and more rigid. It also allows for more surface area for the higher layers to print on. Where there are steep angles, this helps to provide a betters surface finish.

Infill Density

As mentioned before, infill density typically decreases when print size increases. This help in several ways: it reduces the final weight of the print, reduces the amount of material used, and reduces the print time. It is also not necessary to have such a high infill when the number of perimeters and solid layers has gone up, as much those characteristics help to strengthen the piece.

Layer Height

Layer height is one of the settings that is changed when trying to affect the surface finish. However, it can also be used to decrease print times. Doing so will lower the print quality, but not by a noticeable amount. Typically most printing is set at a default layer height of 300 microns which produces smooth surface finishes, but the layers can be seen. Most folks don’t mind this finish as it is a nice compromise between time and quality. However, for rough prototyping, or surface finishes that will be post-process, the layer height can be increased to save time.

Support Criteria

Since overhangs may be much more pronounced in larger models, there will be new instances where support may be needed where it was not needed in a smaller model. Luckily, most slicing software is smart enough to calculate where support is necessary, so this does not impact the user much, but it is an aspect to take into consideration when looking at material usage and print times.

Much more Support

As mentioned previously, there may be instances may be necessary on larger models where it may not have been necessary on the same smaller model. For this reason, much more support is typically seen on larger models. Not only for features, but also due to the size of the print itself. A very tall print with many overhangs would require significant support structure to make sure it prints well. This will also impact the post-processing time as there will be more material to clean off.

Longer Print Times

Imagine a 1 inch cube took about 10 minutes to print. Using the same settings, if that cube was made to be 2 inches, it would take (at a minimum) 8 times longer to print! The time that the nozzle would have to travel each side would double and the number of layers needed would double which would can be expressed mathematically as 2 x 2 x 2 = 8. Of course, settings can be changed to decrease infill, change layer heights, change the number of perimeters and solid, layers to help make these difference smaller, but the curve would follow the trend that as a print gets bigger, the longer it will take to complete. User are typically exposed to prints that are a few hours long on smaller printers, but on lager ones, print times can span days! That’s a major difference!

Potential of Running out of Filament

A lot of spools come in 1 lb or 1 kg quantities. This is sufficient for small prints, but can be consumed on the first few layers of a larger print! The largest spools we stock at re:3D are 15 lbs. These massive amounts of filament allow us to print very large items without much thought with regards to running out of filament. It still does happen however, and it is one of the things that must be considered when starting a multi-day print. Since our software does allow for filament change-out, it is not a big ordeal to swap filament mid-print, but it does slow down the production process, and it needs to be planned for. As prints go into ever-longer territory, the potential for running out of filament is one of the manufacturing spaces that must be considered.

Ernie travels w/Gigabot to share his insights at SXSW, the Austin Mini Makerfaire and UBM Minnesota

We’ve explored some of the benefits and considerations of 3D printing large objects. While the list is by no means exhaustive, it does provide an insight into some the areas where new learning is required and it definitely showcases the great possibilities that are unlocked by an expanded creative volume. Hopefully this provides some insight on what is involved with large prints and we’d be happy to hear your feedback and answer any questions.

Catch you on the next layer!

~Type 1 Ernie: re:3D Ops Man

Ernie Prado

Blog Post Author

Designing a Transformer Toy

The great thing about designing a huge 3D printer is being able to support your friends & family bringing their ideas to life. Below, Nathan, the nephew of Chief Hacker describes how he designed this awesome transformer toy that was printed on Gigabot in one print job.

This transforming robot was based on transformers kids toys. I had played a lot with Transformers toys in the past and desired to make my own design. The concept of pieces held together by elastic was inspired by some transforming wood toys that I had seen on the internet. Before making this design I had experimented with making robots figures similar in concept out of cardboard and rubber bands.

~Happy Printing!

Nathan aka Na Gr

  • Reach me at on G+: https://plus.google.com/118159598743335846845/posts or email my uncle at matthew@re3d.org:)

A Beginner’s Guide to Scaling Your Favorite Print

Odds are if you have a Gigabot you've discovered that the only thing better than 3D printing your favorite open source model, is printing it as big as possible!  In honor of Independence Day, we've scaled an impressive scan of a Statue of Liberty to almost two feet tall, while highlighting a couple of tricks we've learned along the way:).

Step 1: Find Your File

Knowing I wanted to print something patriotic, I conducted a quick search for “statue of liberty” on Yeggi, which yielded multiple results spanning several 3D file sharing platforms.  The Statue Of Liberty Bronze Model by jerryfisher quickly caught my eye, and being a huge Sketchfab fan, I clicked on https://skfb.ly/CONx. The impressive scan of a bronze Statue of Liberty had been downloaded over 200 times and the creator has produced several other awesome files, giving me confidence the file was print worthy.  I was also pleased to see the file was available for sharing through redistribution through Creative Commons licensing.

Step 2: Optimize for Large Scale Success

Once I downloaded the file, I opened it in Simplify3D, our preferred visualization and slicing tool. While centering the file on the build plate and inspecting the print, I noticed the bottom of the design had a slight curve. As I desired a level base to better support the future large statue, I borrowed a trick from Chief Hacker’s cheatsheet.  By lowering the print slightly into the bedplate until the upper part of the coven curve hit the platform, I was able to “cut off” the curved portion of the bottom, rendering it flat after slicing.

Due to the multiple overhangs (including Lady Liberty’s arm), the design required signifiant support material. Based on experience, I recalled that support material over 12 inches could be a little unstable, but after consulting with Chief Hacker, I learned this could be overcome by adding a -45 degree support angle in the support tab of Simplify3D. By alternating the angle, the supports would have more structure and be less wobbly.  I also decided to add a process setting to decrease the speed when printing the crown in order to give the tips more time to cool after seeing some prior fails with similar geometry.

IMG_3109

With these minor manipulations, I was ready to slice and get started! Two filament swaps later I was loving the out-of-filament detection feature on Gigabot Generation 3.0 and diggin my very own Statue of Liberty. Admittedly, it took a little time to remove the extensive support material (and I broke half of a piece of the crown), but the end result was more than worth it!

IMG_3114

Step 3: Personalize Your Masterpiece

The only thing missing was Liberty’s iconic color, which I sourced after a couple of trips to local hardware stores. Sea Mist Rustoleum metallic spray paint did the trick and resulted in a great finish! We’ve had the most luck using spray paints intended for plastic when post-processing PLA, but find dry times between coats need to be extended (or at least when spray painting in the Texas humidity). Also, be sure to remove all the support material before applying a coat of paint as all support artifacts stand out when coated!

We love having our own Lady Liberty in our Austin office.  Huge thanks to Jerry Fisher for sharing this fabulous Statue Of Liberty Bronze Model licensed under CC Attribution!
Want to download the file? Check out https://skfb.ly/CONx

~Happy Printing!

Samantha: @samanthasnabes

Making a 3D Printed Bicycle Prototype

Last summer, Patrick Fiedler developed a 3D printed bicycle prototype for his summer internship.  In his own words, he describes his design process:

Have you ever wondered how 3D printing, renewable resources, and transportation all fit together? Although there many possible combinations, one instance is the 3D printed bicycle project that I worked on last summer. I had the wonderful opportunity to intern at re:3D in Houston, Texas and got the chance to work on this awesome project with the intention of answering this question: Is it possible to 3D print a working bicycle? I set out to do just that. With the large format possibilities of the Gigabot and wide range of filaments compatible with the Gigabot’s re3D hot end, I had the means to get started answering this question. The following is a brief review of my project that I wanted to share with the 3D printing community.

First, I deconstructed a MGX bicycle I found laying around. I analyzed its components and assembly mechanics thoroughly. I had to decide what could possibly be replaced with customized 3D printed components. The most likely option was the frame. With the customizability that comes with any 3D printed piece, I could easily use the modular nature of bicycle parts to attach them to my frame and roll from there (hopefully literally).

I set out to choose a good filament for frame construction. Thankfully, I had already been making ASTM tensile test samples for research re:3D was doing with Dr. Scott Fish at the University of Texas at Austin. Some of the most common filaments: ABS and PET tend to be brittle so it would not be ideal for a bicycle that experiences many dynamic forces and needs the ductility to flex as well as strength. I settled on Taulman 910 filament which combined the durability/elongation of nylon and the strength of co-polymers.

I printed a couple tubes with Taulman’s 645 Nylon filament which seemed pretty strong and had the ability to bend by hand without cracking. However, I realized that a 3D printed tube is much more expensive than metal, and there might be a better material to do the job. I need look no further than outside my bedroom window where a grove of bamboo plants grew flourishing in the humid hot Houston summer. Bamboo grows so fast and is so strong that it would make a perfect renewable tube for the bicycle. I set to work chopping down some plants and then trying various forms of heat treatment from a blow torch, to the oven. A few burnt ends and one smoky kitchen later, I had (somewhat) dry tubes to work with. For those intending to work with bamboo, I suggest either letting them air dry in a dry place out of the sun or at very low temps in an oven with no part of the bamboo touching the oven sides.

To connect these tubes, I used the Taulman 910 to create modular connector pieces. The pieces were custom printed with receiving holes for the diameter of the bamboo pieces I had cut earlier. The nice thing about 3D printing these parts is that you can conform to the exact geometry of your bicycle dimensions and the tubes you decide on using. Using the Simplify 3D program, I was able to examine my layers to make sure the path of my support structure would work out alright. The connector piece shown here is the bottom bracket where the pedal cranks, down tube, seat tube, and chainstays connect.

Interfacing with the rest of the components was the next challenge. The bicycle wheels clamped onto fork shaped dropouts which were easy enough to print. The real fun was going to be putting the crank arm bearings and the headset on. I decided to try a press fit approach for the crank bearings. The 910 was ductile enough to press those bearing right in there. Nothing to block rotation. In addition, I found out that you can machine 910 prints. The headset nuts have threads on the internal diameter that needed to thread onto the frame. I threw some of my 3D printed tubes on the lathe, turned them down, and added some threads. It worked much better than expected. Just remember to make your wall thickness large enough so that you don’t machine into the infill.

The bamboo tubes, the 3D printed tubes and connector pieces all slid together nicely with only a minor fit problem. I forgot support structure on one of my rear dropouts, thus I heated it in some hot water to make it malleable enough to bend back into the proper shape. Everything was adhered together with a two part epoxy and held in place by my bungee cord fixture.

The end product looks much like a real bicycle and may have had the chance to ride like one. A few technical problems kept this prototype from being fully functional. There was some interference along the chain path to prevent usage of some of the gears. Also, the 3D printed tube that runs through the headset above the front fork failed under the large moment that is created by the front fork acting as a lever arm. The rest of the frame, however, was very strong and was able to support weight.

At the end of my time in Houston, I was very surprised at how far the bicycle was able to come along thanks to the structural properties of the Taulman 910 as well as the large format printing capabilities of the Gigabot. If I were to do it again, I would use as much bamboo as possible so it could be renewable. I would also focus on how little plastic material would be needed to make strong connectors, possibly experimenting with more renewable filaments such as PET despite its limitations. Although it wasn’t completely functional, I am confident that yes, it is possible to create a working 3D printed bicycle. One aspect I did like about the modular design was its ability to conform to the exact dimensions needed. All that would be needed would be to change a couple of angles and bamboo tubes lengths, and you would have the geometry for any human rider. You could have a bicycle custom fit to you without needing to settle on a typical configuration. In addition, I liked how easy it was to put together. Anyone with a 3D printer, a bamboo conducive climate, and a nearby bicycle parts repository (like the Austin Yellow Bike Project) Keep your eyes open as I have seen others who are working on their own 3D printed bicycles as well.

All in all, this project was a large amount of fun and made for an amazing summer with the Gigabot 3D printer!

Happy Printing!

~Patrick Fiedler: Mechanical Engineering Intern

Want to continue the research? Apply for an internship at re3d.org/careers!

DIY Gigahacking: 4 Knob Bed Leveling Kit

The printed parts can be found HERE. Pieces must be printed using ABS except for the knobs which can be PLA or ABS, The arms should use 3 perimeters and 40% infill. The rest of the parts can have 2 perimeters and 30 percent infill.

Let’s walk through the steps to retrofit your Gigabot to use the new knob system. Note: the knobs will be installed in the 4 corners of your Gigabot. The picture shows one centered knob in the back but this is for an early revision of Open GB.

4 Knob Leveling Install

Hardware

  • 1/2 inch-20 bolt (4)
  • 1/2 inch-20 nut (4)
  • Arm (4)
arm
  • Bed Pad (4)
boltcap
  • Bolt Cap (4)
knob
  • Knob (4)
knobagin

Additional Materials used

Building the assembly

  • Put a dab of GO2 glue on the sides of a ½ inch nut
  • Drop the nut into the leveling arm so that the hole lines up with the hole for the nut.
  • Add some more glue into the recess just for good measure.
  • Put some glue under the head of the ½ inch bolt and insert the bolt into the knob so that the head hides in the hex hole; make sure it’s pushed in all the way.
  • Add a little more glue on the other side along the sides of the cutout.
  • Glue the cap on the other end of the bolt.
  • Glue sets in 30 min, cures in 24 hours

Preparing for installation

  • Loosen the bolts holding the bed rails. Lower all bed rails to the bottom of the slotted holes and re-tighten the bolts.
  • Remove the adjustment bolts/springs in all 4 corners.
remove
  • Lower the locknuts on all 4 L-bracket spring assemblies. This will provide the bed with the travel it needs. It’s easier to perform this step before putting on the build surface so that you have access to the head of the bolts.
  • Make sure that the rails are generally level with the bottom motors. The one that I installed these on was a decent amount off.
  • IMPORTANT: Adjust the Z height so that the natural state of the bed is about ½ cm or a little less than ¼ inch from the nozzle. Apply another nut to the underside of the Z limit switch bolt as this adjustment will no longer be used and should remain in place.

Installing the leveling assemblies

affixed
  • Insert 4 magic t-nuts (or regular t-nuts if you’re building it from scratch) along the top recess of the front bed rail. Make sure the nuts are inserted in between the L bracket/springs. Note: The locknut needs to be lower than the one in the image; ignore that.
  • Insert 2 t-nuts into each corner of the top recess of the back bed rail. Make sure they go into the side that is front facing. All leveling arms point towards the front of the machine.
  • Use M5 x 10 screws to bolt the arm assemblies into the t-nuts in the top rail.
  • Push the left arm snug against the left L-bracket and the Right snug against the right L bracket. The back arm will sit just left of the cable tray. Give it about a half inch clearance on the right.
  • Put a line of silicone on the flat side of each of the 3 bed pads.
  • Lower all knobs so that the nubs are almost touching the top of the arms, manually lift the bed and slip the bed pads over the nubs trying not to make a mess with the silicone in the process.
  • Raise the knobs and straighten out the pads. The pads should self-align to the nubs but just make sure the pads look visually straight to the edge of the bed and the rail.
  • Put a bead of silicone around each pad and then removed any excess by smearing it with my finger.

Leveling the bed

mikedone
  • Position the nozzle above the left knob and turn clockwise to raise the bed in that corner. Raise so that it’s almost touching. Do the same for the right side.
  • Raise the back knob so that the nozzle is almost touching the bed.
  • Go back to the front left and use a sheet of paper to keep between the bed and the nozzle. Turn the knob clockwise until you can feel slight friction on the paper. Do the same for the right side, and then do the same in the back 2 knobs.
  • Move the nozzle around the bed and try the paper trick to make sure all is flat. If it sticks anywhere, recheck your 4 points.

COMPLETE!!!

Happy Printing!

~Mike

Mike Battaglia

Blog Post Author

@mikebattaglia

Made in America: 3D Printing Prototypes for Stump Armour Molds

Meet Travis: A Texan, father, entrepreneur, warrior, and inventor.

re:3D first met Travis in Austin last winter as he was prototyping his second version of Stump Armour: an affordable, accessible device he pioneered in order to expand mobility options for bilateral amputees.

As a combat-wounded Marine, Travis is uniquely qualified to inspire solutions to increase maneuverability for other double amputees while reducing back strain that traditional prosthetics can create. By using himself as the test subject and leveraging business insights he acquired in the 100 Entrepreneurs Project and the Entrepreneurial Bootcamp for Veterans (EBV), Travis launched Stump Armour on indiegogo this week.

stumparmourdurty
Stump Armour Mod 1

About Stump Armour

Stump Armour is a round design that connects to traditional sockets to allow for constant surface contact from any angle. Pressure can be directly applied to a terrain without changing position, allowing amputees to roll themselves up independently when preforming activities close to the ground.  Since the round shape can grab from nearly any position, it works great on uneven/irregular surfaces, so the amputee doesn’t need to focus as much concentration on limb placement when compared to other devices.  Travis doesn’t feel Stump Armour is intended to replace full leg or knee prosthetics. Rather, it’s meant to increase functionality with specific tasks.

IMG_1546

Keeping Costs Low

A key tenant of the Stump Armor’s mission is to make devices as affordable as possible worldwide. For this reason, Travis contracted Mike Battaglia & I last January to see if we could 3D print his vision for a Stump Armour’s Modification. Using Simplify3D we were able to generate a raft & support that could easily break off. The completed PLA prototypes printed great and we were excited to give them to Travis, who planned to use the prints to create a mold to scale Stump Armor globally.

IMG_1549
3D printed Stump Armour Mods 3 (left) and Mod 4 (right) cast at SureCast

Prints in hand, Travis partnered with local foundries who guided him through the process of making his own custom mold to cast multiple sets of Stump Armour.  This week we interviewed Travis to learn more about the process he used to create a mold from a print by working with Stevens Art. Below are the steps that he described:

stumparmourmold
  • From a 3d printed prototype made on Gigabot, a silicone rubber mold was created.
  • The print was covered in an releasing agent that was then covered in silicone, leaving an inlet for wax to be poured in later.
  • After the silicone cured, a 2 piece plaster shell was made.
  • Once completed, the silicone was carefully cut with a razor along where the plaster shells come together so it would come apart into 2 pieces.
stumparmourpour
  • The shells were clamped together and hot wax was then poured into the inlet.
  • When the wax hardened, the wax casting of the original print was removed.
stumparmourwaxdone
  • The wax cast was then dipped in a a ceramic slurry and power coat until a hard shell formed.
  • This shell was fired in an oven to harden the cast melt the wax out.
  • Metal was poured in and the ceramic shell was broken off after it cooled.
  • A metal replica of the original 3d print was then ready for finishing!
stumparmourstacked
Stump Armour Mod 2

Using lost wax casting, Travis was able to do his first production run of Stump Armour, which is now available to other amputees on the Stump Armour indiegogo campaign. You can support Stump Armour’s next production run and Stump Armour donations at: https://www.indiegogo.com/projects/stump-armour#/  until July 1st.

stumparmournewlogo
Want to learn more?
  • Email: info@stumparmour.com
  • Web: http://www.stumparmour.com/
  • YouTube: https://www.youtube.com/channel/UCsObkfi6W6x2B6dpZ89_CGg/videos?sort=dd&view=0&shelf_id=0
  • Facebook: https://www.facebook.com/Greens-Machines-LLC-716439551739895/
  • Google: https://plus.google.com/u/2/b/106145756742784523319/106145756742784523319/posts
  • LinkedIn: https://www.linkedin.com/company/10602419trk=tyah&trkInfo=clickedVertical%3Acompany%2CclickedEntityId%3A10602419%2Cidx%3A2-1-2%2CtarId%3A1464716547152%2Ctas%3Agreens%20machines