New Year, New Printers! Meet Gigabot 4, Terabot 4, GigabotX 2 & TerabotX 2

A green plated circuit board with many electrical components.
Left To Right: Gigabot 4 with Enclosure, Gigabot 4 XLT, Terabot 4, Exabot, TerabotX 2, GigabotX 2 XLT, GigabotX 2 with Enclosure

Introducing the Next Evolution of re:3D 3D Printers Featuring Klipper Firmware and ArchiMajor Control Boards

When deciding what changes to make on the next version of your Gigabot and Terabot 3D printers, your needs came first. The Gigabot family of customers has always inspired us to push this technology forward because it’s what you do with it that motivates us. Whether you’re teaching the next generation of change makers or innovating in advanced manufacturing, your feedback determines where we put our R&D focus.

The biggest visual change you’ll see on all versions of re:3D 3D printers is the front mounted 10” full color LCD touchscreen. The touchscreen includes temperature, and motion controls, temperature history graph and preset macros. The menu options add file management, gcode editing, command line input, and print history analytics and tracking. Also included is a webcam viewer for remote monitoring and an integrated USB port for loading gcode files directly on to your printer.

This touchscreen software is just one component of our new Klipper open-source software stack. We’ve transitioned from Marlin firmware to Klipper because it enables high precision stepper movement, smooth pressure advance and input shaping, and also an API server that enables opportunity for custom development. The Klipper web application runs the touchscreen from a Raspberry Pi and enables you to access the printer from your local network on desktop or mobile browsers with all the same control options you’re able to perform directly at the printer.

In order to successfully integrate this exciting new software stack, we’ve overhauled our electrical system starting with the control board. We partnered with US based manufacturer Ultimachine to design a custom 32bit ArchiMajor control board for your Gigabot. The advanced board features eight integrated stepper motor drivers, three heater outputs, five thermocouple inputs, four controllable fans and eight endstops. These provide flexibility to extend the functionality of your Gigabot, for example, adding an additional thermocouple or part cooling which is under development at re:3D. The new control board and the Raspberry Pi are now inside a 16” electrical enclosure with an integrated power switch, power filter and more durable flex rated cabling. Not only does this board increase your 3D printer’s processing power, but it allows us to better control our supply chain and electronics quality with a strong US manufacturer as our partner.

View the press release about this partnership.

Platform-Wide Features

Stress tested in the re:3D factory, the new tube-style thermocouple is a more durable, consistent and accurate temperature reader for your Gigabot. We’ve added this improvement with a ½” thick aluminum bed plate, that is precision-blanchard ground flat and parallel to less than 0.005”. The bed is heated by a full-size silicone rubber heating pad, which allows the printing of high-temperature industrial materials. A robust cable carrier and cables rated for 1 million cycles of flexing protects all moving wires. Additionally, all unenclosed printers come standard with full side panels to protect electronics and cabling

FFF Filament 3D Printer Features

In the transition from Gigabot 3+ to Gigabot 4 we’ve pushed out some changes early as technology improvements have increased reliability and longevity for your printer. Many of these updates center around the extrusion system: The all metal extruder body, 20 Series Hot Ends for 0.8 nozzles and Terabot 4, tube style thermocouples and heater cartridges are all standard, combining to make the most robust, industrial extruder system ever on your Gigabot.

To keep Gigabot affordable you may still purchase a regular 600 mm cubed Gigabot 4 as a kit which ships in flatpack boxes, and the full enclosure is an optional add-on for pre-built Gigabot 4 and Gigabot 4 XLT sized 3D printers. Terabot 4, as before, comes with the enclosure standard. One change we’ve integrated as standard is the side panels on your Gigabot cover the full side on the left and right to provide better protection for the motors and electronic components.

As with the changes we made during Gigabot 3+’s lifespan, This is just the beginning. Gigabot 4 will continue to iterate and grow and change to meet your needs as the technology evolves. Plans are already in the works for a filament dry box, bed probing and even more robust build plate and frame improvements. Stay tuned!

FGF Pellet and Granule 3D Printer Features

Since releasing the beta version of Gigabot X in 2018, re:3D invested significant R&D resources from community support to produce a more agile, advanced and capable fused granular fabrication 3D printer.

GigabotX 2 features a feeding and extrusion system precision engineered for processing pelletized and granular thermoplastics. Material is manually fed into the 24 hour capacity hopper which rides on an independent hopper gantry system, to allow a full and smooth range of motion and consistent feeding into the extruder.

Print material flows from the hopper into the extruder via either the gravity fed feed throat or the optional active feeding system, or crammer, which includes a motorized auger that pushes material into the extruder with a user controllable feed rate.

The GigabotX 2 extruder is powered by a 425 ozf*in NEMA 23 motor with planetary gear box to provide increased torque for flowing materials. The extruder is a solid steel ⅝” screw with 16:1 L/D ratio designed with our partners specifically for consistent throughput for thermoplastics. Three independently controllable heaters are mounted on the extruder barrel allowing for extrusion temperatures up to 270°C. Interchangeable nozzles between 0.4mm and 2.85mm in diameter can be used to control resolution and extrusion width.

GigabotX 2 is the culmination of our mission to enable more users to 3D print directly from novel and waste plastics, but we’re not stopping here. Research is currently underway to integrate a granulator, dryer and automatic feeding system with GigabotX 2 to make machine operation even more efficient and user friendly and enable anyone anywhere any time to be the problem solvers for their community.

Charlotte craff

Blog Post Author

Gigabot Engineering Updates – April 2022

Hi Gigabot family! It’s been a few months since we posted an engineering update, but re:3D’s engineers have been far from idle. We’ve made some further improvements to the new Metal Body Extruders and created an entirely new hot end to keep pushing the Gigabot to produce better and better results and improve your user experience. See below for details on what has changed. Current Gigabot®, Gigabot® X, Exabot® and Terabot® owners can order these as replacement parts that are upgradable from previous versions.

New Parts

Gigabot® 3+, Terabot®, Exabot®

  • 20 Series Hot Ends – Replacing the Mondo Hot End, the re:3D 20 Series Hot End was created by our engineers and machinists to increase the max flow rate of polymer deposition. With a greater flow rate, parts can print faster, reducing production time and cost. The 20 Series Hot End achieves this with a 20mm long heater block wrapped in Nomex® insulation. It comes standard with an A2 hardened steel nozzle for printing with abrasive materials like carbon-filled polymers. You can select either 0.4mm or 0.8mm nozzle size for your application.
  • 20 Series Fan Mounts – Fan mounts specific for the new 20 Series Hot End, these direct airflow to your prints for cooling.
  • Terabot only: Bed Frame Stands – an accessory for Terabot to aid in resetting the bed leveling.

Fit and Strength Part Adjustments

The below parts have had geometry changes or other additions to make them stronger or fit more precisely.

Gigabot® 3+, Terabot®, Exabot®

  • Metal Body Extruders- transitioned the new Metal Body Extruders from an aluminum frame and plastic inset to a complete aluminum piece. 
  • Light Strip Cover – redesigned to fit new LED light strip with on/off switch 

Gigabot® X

  • Gigabot X Extruder Cover – fit and tolerance adjustments. more secure mounting
  • Motor Spacer – added wire management clips for all connections to the extruder
  • End Rail Caps – covering the ends of the aluminum extrusion on the X cross rail.

Firmware

Gigabot® X 4.2.4.2 Reg

This release is GBX 4.2.4 with some bug fixes discovered after the release of GBX 4.2.4. The fixes are:

  • Updating the GBX Regular build volume in the X, Y, and Z dimensions
  • Updating the GBX XLT build volume in the X, Y, and Z dimensions
  • Adjusting the minimum temperature for the heat sink fan from 18C to 60C

Check out additional update on our Forum. Want to chat with an engineer to share feedback on your Gigabot & re:3D design priorities? Email info@re3d.org.

Happy Printing!

~Your Gigabot Engineering Team

Gigabot Engineering Updates – September 2021

An aluminum dual extrusion extruder for a 3d printer

re:3D engineers have spent the last few months making some exciting changes to our product lines. re:3D 3D printers are shipping with some great new enhancements. Current Gigabot®, Gigabot® X, Exabot® and Terabot® owners can order these as replacement parts that are upgradable from previous versions.

New Parts

Gigabot® 3+, Terabot®, Exabot®

  • Metal Body Extruder – 2 pieces, left and right. The metal body extruder replaces the unibody extruder on re:3D filament-based, dual extrusion 3d printers. High-strength aluminum housing and tensioner arm for a long-lasting, industrial extruder.
  • Terabot Magnetic Catch – Magnetic latch for Terabot enclosure doors

Fit and Strength Part Adjustments

The below parts have had geometry changes or other additions to make them stronger or fit more precisely.

Gigabot® 3+, Terabot®, Exabot®

  • Filament Detection Covers – Improved fit for easier removal
  • LED Light Cover – Redesigned to fit new led strip, plus improved durability when used in enclosures 
  • GB3+ X Axis Cable Carrier Support – Strengthened for greater durability
  • GB3+ XY Upright – Revised to fit larger wiring, better print quality and durability of interface with cable carrier
  • Mondo Hot End Fan Mounts (Left & Right) – Revised fan placement for better part cooling

Check out additional update on our Forum. Want to chat with an engineer to share feedback on your Gigabot & re:3D design priorities? Email info@re3d.org.

Happy Printing!

~Your Gigabot Engineering Team

Gigabot Engineering Updates – February 2021

CoverQ1

2021 is going to be an exciting year for re:3D, and we have multiple product releases in the works for you. First, however, we want to update you on upgrades to our current offerings as well as highlight some new products now available from re:3D. As of January 1, 2021, re:3D 3D printers will ship with some great new enhancements. Current Gigabot®, Gigabot® X, and Terabot®, owners can order these as replacement parts that are upgradable from previous versions.

New Products

New Parts

Gigabot® X

  • Extruder Cover – covers and protects extruder area of GBX
  • Hopper Gantry – puts the hopper on a mobile gantry system which improves pellet flow 
  • For additional details on GBX Updates, see our Forum Post

Fit and Strength Part Adjustments

The below parts have had geometry changes or other additions to make them stronger or fit more precisely.

Gigabot® X

  • [11384] Thrust Bearing Plate – Improved fit with extruder body 
  • Extruder Body – Improved material feeding
  • Feed Throat – Improved material feeding
  • Feed Tube – Revised for compatibility with new gantry
  • Hopper – Revised for compatibility with new gantry
  • Motor Spacer – Revised for compatibility with new extruder cover

Terabot®

  • Viki Enclosure – Improved wire routing to electrical box

Firmware

Gigabot® X

  • Adjusted Change Pellet Routine extrusion speed and resolved bug
  • Fixed build chamber dimensions for XL and XLT sizes
  • Updated preheat temperature options
  • Added capability for ditto printing with a motorized auger as a second extruder
  • Firmware installation instructions are available in our Knowledge Base

Check out additional update on our Forum. Want to chat with an engineer to share feedback on your Gigabot & re:3D design priorities? Email info@re3d.org.

Happy Printing!

~Your Gigabot Engineering Team

Gigabot Engineering Updates – October 2020

re:3D’s Research and Development team never stands still, and while we’re developing the next generation of your Gigabot® and Gigabot® X 3D Printers, we’re continually looking for ways to refine the current iteration’s user experience, precision, and quality. As of October 1, 2020, all new Gigabot® 3+, Terabot and Gigabot® X 3D printers ship with the below enhancements. Current Gigabot® owners can order these as replacement parts that are fully compatible with previous versions.

New 3D Printed Parts

All Models

  • [12007] Fan Filter Base, [12008] Fan Filter Attachment,  [12074] Filter – Prevents buildup of dust in electrical box 

Gigabot® X

  • [12077] GBX Feed Tube Mount – Reduces slack in feed tube for better feedstock flow

Fit and Strength Part Adjustments

The below parts have had geometry changes or other additions to make them stronger or fit more precisely.

Gigabot® X and Gigabot® 3+

  • [11158] Gigabox Magnet Bracket 4 – Revised for better fit with linear rails
  • [11352] GBX Motor Driver Enclosure & [11354] GBX Motor Driver Enclosure Lid – Revised fit for easier assembly
  • [11336] GBX Feed Throat & [11986] GBX feed Throat Stopper – Improved pellet flow
  • [11484] GBX Hopper & [11529] GBX Hopper Lid – Improved seal and durability

Check out additional update on our Forum. Want to chat with an engineer to share feedback on your Gigabot & re:3D design priorities? Email info@re3d.org.

Happy Printing!

~Your Gigabot Engineering Team

Gigabot Engineering Updates – July 2020

re:3D’s Research and Development team never stands still, and while we’re developing the next generation of your Gigabot® and Gigabot® X 3D Printers, we’re continually looking for ways to refine the current iteration’s user experience, precision, and quality. As of July 1, 2020, all new Gigabot® 3+, Terabot and Gigabot® X 3D printers ship with the below enhancements. Current Gigabot® owners can order these as replacement parts that are fully compatible with previous versions.

New 3D Printed Parts (Polycarbonate unless otherwise indicated)

Gigabot® X

  • [11925] GBX Hopper Hose Clip: To make changing out feedstock less messy.
  • [11948] GBX Motor Coupler Insert (Taulman Nylon 910): more durable than the previous iteration.

Terabot

  • [11914], [11915] Terabot Light Rail End Cap: angled cap for positioning the LED light correctly.
  • Viki Enclosure: Terabot specific VIKI enclosure which takes its size into account.

New Metal Parts

Gigabot® X

  • [11955] GBX Radial Bearing (updated): more durable than previous version

Gigabot® 3+

  • [11953], [11954] GB3+ Hot End 0.25mm nozzle (Optional Part): for those who want finer details while printing big.

Fit and Strength Part Adjustments:

The below parts have had geometry changes or other additions to make them stronger or fit more precisely.

Gigabot® X

  • [11339] GBX Y Slide Bracket
  • [11344], [11342] GBX Belt Mounts
  • [11338] GBX Motor Spacer
  • [11952] GBX Enclosure Bottom Panel

Gigabot® 3+

  • [10880] Viki Mount
  • [Various] Z-axis Threaded Rods now coated for improved corrosion resistance
  • [10257] X Motor Mount
  • [11081], [11136] Left and Right GB3+ Extruder Tensioner
  • [11518] GB3+ Unibody Extruder
  • [10113] GB3+ Dual Extruder Cover

Terabot

  • [11662] Terabot Y Axis Belt Mount
  • [11658] Terabot Y Slide Bracket
  • [11697], [11690] X and Y Motor Mounts
  • [11664] Y Limit Switch Mount
  • [11736] 40×40 Rail End Cap
  • Bed Leveling Knobs Removed and Replaced With Bolts
  • [11504] Full Enclosure

Electrical Updates

  • Improved Viki grounding for all units
  • Electrical Box layout redesigned for Gigabot® 3+

Gigabot Engineering Updates – February 2020

Over the last few months, our engineering team has made some iterative design changes to both our Gigabot 3+ and Gigabot X 3D Printers.

Parts modified are:

Gigabot 3+

  • 10063  GB3+ Bed Side Plate
  • Z-Axis Stepper Motors
  • 11907 GB3+ Acme Flange Nut Cup
  • 11093 GB3+ X/Y Upright

Gigabot X

  • 11377 GBX Stepper Driver

 

View the video below to find out how they’ve changed!

CES 2020: The Return of Gigabot X!

In October 2019, re:3D was honored to win the Startup of The Year competition at the SOTY Summit in Memphis, TN. The Startup of the Year team has been incredibly supportive since our win, and one of the great opportunities they provided us was to showcase Gigabot X, our 3D printer which prints with pellets, regrind and shredded plastic waste, last week at the Consumer Electronics Show (CES), in Las Vegas, NV.

You may remember the epic road trip that we took to get our team to CES last year (there were aliens involved!), and though this year we traveled in a slightly more conventional way, there were still plenty of laughs, mind-blowing tech and of course chats with new friends about #3DPrintingWithPurpose.

The re:3D Team at our CES booth. Samantha Snabes is sitting in a 3D printed chair designed by Mike Battaglia.

We exhibited in the 3D Printing row in Eureka Park at the Sands Expo, sandwiched between fellow 3D printing innovators, Plasmics and coffee gurus, Spinn. No, Spinn doesn’t 3D print their coffee, but it was, as the kids would say, dank!!

All week our booth was packed with visitors from around the world, initially drawn in by Gigabot X’s huge build volume and staying to learn more when we told them we were printing rockets with 100% Recycled PET pellets. Recycling and reusing plastics in 3D printers drew companies interested in sustainability, and we were thrilled to share that because of our partnership with Habitat for Humanity, our 3D printed chair was using 100% reclaimed materials: the rPET sides were supported by wooden slats made from unused scrap wood donated to the Habitat for Humanity ReStore.

The Startup of the Year trophy was our constant companion as we traipsed around Las Vegas, providing treats from its gilded cup to curious onlookers like some sort of bountiful cornucopia. Above, it graces our booth, an all-you-can-eat sushi restaurant, AFWERX Vegas and the Hackster.io party.

Samantha pitches at NASA iTech.

We joined an innovative group of technology startups to pitch at the NASA iTech Ignite the Night competition. co-Founder and Catalyst, Samantha Snabes shared our goals to put a Gigabot X in space as a means to recycle plastics into new tools for astronauts. We are thrilled for winner Otolith Labs who has created a wearable to reduce vertigo in astronauts. Many thanks to NASA iTech for the amazing opportunity which led to great conversations and potential collaborations to come!

3D Printing nerds that we are, we had a chance to check out what the rest of our industry friends were up to. Here’s a sample of gems from around CES:

Finally, some of us had the honor to volunteer as judges for the IEEE Entrepreneurship N3XT Stars Competition, which we won in 2018. From all the startups in Eureka Park, five finalists who most embody IEEE’s mission to foster technological innovation and excellence for the benefit of humanity were chosen and then narrowed down to three winners. Check out the new N3XT Stars: Longan VisionSafeware, and Waverly Labs!

Thanks to all of our customers who stopped by for a high five and to all the new friends who helped spread our #3DPrintingWithPurpose mission throughout CES and beyond. Until next time, Vegas!

Charlotte craff

Blog Post Author

Gigabot 3+ Updates for Fall 2019

re:3D’s Research and Development team never stands still, and while we’re developing the next generation of your Gigabot® and Gigabot® X 3D Printers, we’re continually looking for ways to refine the current iteration’s user experience, precision, and quality. As of October 1, 2019, all new Gigabot®3+ 3D printers ship with the below enhancements. Current Gigabot® owners can order these as replacement parts that are fully compatible with previous versions.

Major Changes

LED Light Cover

To enhance user comfort and safety, we’ve created a full length 3D printed cover that fits over the top of the front-mounted LED light strip.

Printed Extruder indicators and part numbers

Our Unibody Extruder design, which was released this past spring, as well as our Filament Detection units now features numerical hot end indicator labels for a visual aid for filament loading. Additionally, these and many other 3D printed parts now include part and revision numbers. Not sure what a part is called? Search our store using the part number or share the part number with customer support to help streamline troubleshooting communication.

FIRMWARE RELEASE VERSION 4.2.3

Our newest iteration of Gigabot®3+ firmware has been posted at re3d.zendesk.com along with instructions for how to flash your firmware. This firmware update includes the following changes:

  • Increased electrical current to X and Y motors to prevent layer shifts.
  • Decreased filament feed rate during the Filament Change routine for easier purging.
  • Minor Bug Fixes

Fit and Strength Adjustments for Polycarbonate 3D Printed Parts

The following parts have had material added for improved strength and durability:

  • 10870 Extruder Tensioner Left 
  • 10871 Extruder Tensioner Right 

The below parts have had their designs modified for better fit or print quality:

  • 11157 Gigabox Magnet Bracket 1 
  • 11245 Gigabox Magnet Bracket 3
  • 11158 Gigabox Magnet Bracket 4
  • 11159 Gigabox Y Support Magnet Bracket
  • 11238 Gigabox Enclosure Corner Cap
  • 10511 XY Upright Cover
  • 11251 Filament Detection Cover Right
  • 11252 Filament Detection Cover Left
  • 10599 Filament Tube Connector

We’ve upped the durability and longevity of our head cable and added 3D printed wire separators inside the cable carrier to protect the electrical wiring as it rolls and unrolls during normal Gigabot® operation.

Under the category of non-3D printed parts, we’ve thickened our bed plates to improve strength and rigidity. The square, left and right leveling blocks attached to the bed frame have had fit adjustments. We’ve also adjusted hole spacing for Gigabox Enclosure panels and split the top panel on the Gigabox Enclosure into two pieces. This improves manufacturing quality as well as increases modularity, as one piece can now be removed for venting or other customizations.

Do you have an improvement or a design change you’d like to see for this or future versions of Gigabot®? Fill out our New Feature Request form and share your ideas with us!

Charlotte craff

Blog Post Author

Gigabot X Gets NSF SBIR Phase II Funded

We are thrilled to share that re:3D has received the NSF SBIR Phase II grant to further commercialize Gigabot X! You can view the official award here for more details on this $749,111.00 grant and also check out the latest video update on Gigabot X published last week (a complementary blog post is coming your way very soon as well to showcase these features). But for now, we just wanted to share the good news along with our deepest gratitude for each and every one of you out there who was an integral part of our journey to this milestone. Below you’ll find the official press release or you can download the PDF version of it here re:3d NSF SBIR Phase II Awardee Press Release.

re:3D Inc. Awarded Competitive Grant from the National Science Foundation

America’s Seed Fund Powered by NSF Provides Funding for R&D; Helps small businesses move innovations out of the lab and into the market

Houston, Texas April 30, 2019 –  re:3D Inc. has been awarded a National Science Foundation (NSF) Small Business Innovation Research (SBIR) Phase II grant for $749,111 to commercialize innovative technology by conducting research and development (R&D) work on increasing maker manufacturing through 3D printing with reclaimed plastic.

re:3D manufactures large-scale, affordable 3D printers and most recently, printers printing from multiple types of plastic waste as made possible with the support of NSF SBIR. With headquarters in Texas and Puerto Rico, re:3D has 20+ employees who serve their customers in 55+ countries in industries such as healthcare, defense, manufacturing, art and more. Beyond creating 3D printers, re:3D also offers 3D printing contract services, design, education, consulting and custom 3D printer manufacturing in pursuit of decimating and cost and scale barriers to 3D printing while simultaneously transforming traditional supply chains and empowering more circular economies.

NSF SBIR support of this proposal is justified for the technology’s far-reaching potential. The two main impacts of such hardware are environmental: for the technologies’ potential to upcycle otherwise discarded post manufacturing or post-consumer waste, reduction in on-demand inventory holding, and condensed supply chains, and societal: for the technologies’ potential to create new jobs and enterprises along with the 3D printing ecosystem by enabling locally driven manufacturing, thus bringing jobs back to America.

“The National Science Foundation supports startups and small businesses with the most innovative, cutting-edge ideas that have the potential to become great commercial successes and make huge societal impacts,” said Graciela Narcho, Acting Director of the Division of Industrial Innovation and Partnerships at NSF. “We hope that seed funding will spark solutions to some of the most important challenges of our time across all areas of science and technology.”

“We are incredibly humbled to receive support from the NSF to continue our research to commercialize a full suite of affordable technologies that can enable 3D printing from virgin & reclaimed regrind and pellets,” said re:3D’s Co-Founder and Catalyst, Samantha Snabes. “During our Phase I grant we were able to create a prototype printer, now being sold in beta. Phase II will allow us to evolve the printer as a full-scale commercial offering, along with a grinding and drying system. We are eager to share our findings with the community as we Dream Big and Print Huge from Recyclables!”

Small businesses can receive up to $1.5 million in funding from NSF. Companies must first have received a Phase I award (up to $225,000) to become eligible to apply for a Phase II grant (up to $750,000) to further develop and commercialize the technology. Small businesses with Phase II grants are eligible to receive up to $500,000 in additional matching funds with qualifying third-party investment or sales.

Small businesses with innovative science and technology solutions and commercial potential across almost all areas of technology are encouraged to apply. All proposals submitted to the NSF SBIR/STTR program undergo a rigorous merit-based review process. NSF’s deadlines for Phase I small business proposals occur twice annually, in June and December.

To learn more about the NSF SBIR/STTR program, visit: seedfund.nsf.gov and see more information on re:3D’s Phase II Award here.

About the National Science Foundation’s Small Business Programs: America’s Seed Fund powered by the National Science Foundation (NSF) awards nearly $200 million annually to startups and small businesses, transforming scientific discovery into products and services with commercial and societal impact. Startups working across almost all areas of science and technology can receive up to $1.5 million in non-dilutive funds to support research and development (R&D), helping de-risk technology for commercial success. America’s Seed Fund is congressionally mandated through the Small Business Innovation Research (SBIR) program. The NSF is an independent federal agency with a budget of about $8.4 billion that supports fundamental research and education across all fields of science and engineering.

About re:3D® Inc. is committed to decimating the cost & scale barriers to industrial 3D printing. After pioneering the world’s first affordable, human-scale industrial 3D printer, re:3D is now enabling 3D printing directly from reclaimed plastic pellets or flake. Beyond creating the world’s largest, most affordable 3D printers, re:3D also offers 3D printing services including contract printing, design, education, custom 3D printers and consulting. Launched in 2013 by for NASA contractor technologists, re:3D now has a scaling workforce of 20+ employees with offices in Houston, Austin, and San Juan, Puerto Rico and service customers in 55+ countries who are solving problems across industries such as health, manufacturing, education, and more. For more info, visit www.re3D.org.

Cat George

Blog Post Author