FFF1: Our FFF1rst Polymer Derby

On April 9, 2019 re:3D hosted the first annual FFF1: Polymer Derby!  You may be wracking your brain trying to figure out what we are talking about here, so let me explain:

We challenged each other to a gravity car racing competition.  Quite similar to a Pinewood Derby (in fact we borrowed a pinewood derby track from local Cub Scout Pack 595) – each competitor designed a car, printed it on Gigabot, attached some wheels – and we were off to the races on derby day!

As a distributed team, with competitors in Houston, Austin, Puerto Rico, and New York – we established a rule from the start that you must design your own car  and if you require help with your design (since not everyone is a 3D design wizz) you had to reach out to someone in a different location from your home office.

We thought this was a great opportunity to not only get everyone designing and printing in 3D – but to also make sure that our distributed team members interacted with someone from a different office on something fun that wasn’t just work related.

Almost immediately after announcing the competition, (in mid-January) we had questions, everyone wanted to know the rules, which admittedly didn’t yet exist, and our engineers were particularly interested in finding loopholes in said rules so that they could cheat the system.  I promised the team that I would write-up an entire tome of rules and got to work, we started with the basic size parameters (borrowed from the pinewood derby to fit their track), and then added layer upon layer of bureaucracy and ridiculousness on top of what should be a relatively straightforward idea (I will post rules examples at the very end of this post).

The cars had to:

  • Weigh no more than 5.00 oz
  • Length shall not exceed 7 in
  • Width shall not exceed 2.75 in
  • Car must have 5/16″ clearance underneath
  • Wheels must be unmodified (we gave everyone a standard set of wheels)

Ultimately the designs were up to each individual’s creativity.

Come derby day, there was an amazing diversity in designs.  The track was setup in the front showroom of our Houston HQ.  We had an official weigh-in and measurement period to check that all cars conformed to the rules.  We made up t-shirts to memorialize the day.  And then we started the competition.

Each competitor chose a number from a hat – to get randomly assigned a place on our competition bracket.  We then competed best out of 3 heats, with racers switching sides (there were only 2 racers at a time) after each heat. As the day went on, the biggest determining factor in the fastest cars was the weight.  Any racer that was below 5.00 oz was at a distinct disadvantage, and all of the cars in the quarter-finals and beyond were at the target weight exactly.

When all was said and done we had a winner! Technically we had two winners – the Fastest Car – won the racing piece of the competition.  The Flyest Ride – was voted as the best looking car by all of the competitors.   Congratulations to Samantha (fastest car) and Mitch (flyest ride).

Stay tuned for more Polymer Derby fun, as this will definitely become an annual event at re:3D, and perhaps across the world?!  Sign-up for our newsletter to always be up-to-date on what’s happening at re:3D.

Looking forward to next year's competition!

International Polymer Derby Congress Rules & Regulations (These are just a small sampling of the rules for this competition):

  1. Cars shall be 3D printed – in any material that is currently able to be 3D printed.
  2. The majority of the car shall be printed on an FFF/FDM style 3D printer, but does not have to be printed in one piece.
  3. The car must be free-wheeling, with no starting or propulsion devices

Inspections:

The day of the race, while style voting and race seeding is taking place, race officials will open the Inspection Zone:

  1. Cars will be Inspected individually for conformity to all rules of the IPDC and the Polymer Derby Championship Racing Series (PDCRS).
  2. Each car will be weighed (see weight requirements Sec. 1.2 A-I. above)
  3. Each car will be measured for length, width, ground clearance, and wheel clearance (Sec. 1.2B – I-IV).
  4. Each car will be thoroughly inspected for any potential safety or hazard violations
  5. Each car’s wheels will be gone over with a fine tooth comb, as modification of stock wheels is strictly prohibited (In accordance with Sec. 1.2 C – I & II)
    1. Any car found to have illegal modifications to the wheels is subject to being gleefully smashed with a hammer by a race official (viewer discretion is advised)

Failed Inspections:

  1. Any competitor’s car that is found to not pass inspection will have an opportunity to adjust/fix their vehicle and have it re-inspected. An explanation of why the car failed inspection will be given to each competitor and the racer will have 10 minutes to make the proper adjustments to bring their vehicle into conformity with the race rules.
  2. If the racer fails to bring their car into conformity within 10 minutes, fails to present their car for re-inspection before the 10 minute time period is up, OR fails the inspection for a second time – the car is no longer eligible for the Fastest or Flyest awards (Sec. 8 Subsec I-III.), but is eligible for the Junker award (Sec. 8 Subsec. IV.).
    1. Cars that fail the secondary inspection may still participate in the tournament for fun, but will not be eligible to win.
    2. If you make illegal modifications that go undetected by the judges, but manage to make your first run before judges take notice, you may continue using your illegal car without reprimand. Gamble at your own risk.

Style Voting:

While the fastest car down the track is the ultimate winner – there will be style points given out for the car that looks the best.

  1. Subjective voting will take place by each competitor at the beginning of the competition.
  2. The voters/competitors may use any method of determining the best “looking” car that they see fit.
  3. Each competitor will fill out a secret ballot to determine their favorite car.
  4. Each competitor will vote only once and can not vote for themselves
  5. Bribes for style votes, while not illegal, are harshly discouraged.

Grievances:

Official grievances may be filed.

  1. For a grievance about a particular heat/race the grievance will only be valid if:
    1. Filed within 180 seconds of the race ending, in written form, adhering to the following parameters:
      1. Printed, in landscape orientation, on standard sized paper (8.5”x11”)
      2. Comic sans font
        1. font size = 17.5pt.
      3. The grievance must follow the standard limerick format
        1. Five lines – 2 long, 2 short, 1 long,
        2. Rhyme scheme AABBA
      4. Sent via USPS standard mail, postage paid to:

International Polymer Derby Congress
Department of Rules, Grievances, and Dispute Resolution
re:3D, Inc
1100 Hercules Ave, Suite 220
Houston, TX 77058

Or hand delivered, with a bow/curtsey, directly to the Rules Czarina or Czarina designate for an immediate ruling

Awards:

  1. Fastest: Fastest car to win the final race, wins the Polymer Derby Champion Award
  2. Flyest: Top vote getting car for style wins the “Best-in-Show” – Flyest Car award
  3. Little Miss Fly-Ride Should the top style car and top speed car be one in the same – the title of “Champion of Champions” or “Little Miss Fly-Ride” will be bestowed upon the winner along with lavish praise and an award of at least one but not to exceed 100 cheap beers.
  4. Junker: The “Junker” award goes to any car that fails to make it down the track, or breaks at any point during the competition.  It is quite embarrassing.
  5. Flunker: The “Flunker” award goes to any car that fails the pre-race inspection, and is not eligible to win awards I-III of this section.

Mike Strong

Blog Post Author

Embracing New Tech in an Old Trade: Firebird 3D

Chad Caswell understands that this is a difficult concept for people to grasp.

“You’re going directly from a very digital process into a very old process where you’re grinding metal and welding and piecing it together.”

Caswell is the founder and owner of Firebird 3D, a company in Troutdale, Oregon which provides technical services to artists in the form of digital sculpting, CNC foam milling, 3D scanning, and of course, 3D printing. He uses these technologies to help artists more easily and affordably cast their work in bronze, a service which he does in conjunction with Firebird Bronze, a full service foundry owned and operated by Rip Caswell, his father.

As a trailblazer in this arena, Caswell understands the thought process of many artists and foundry owners on the topic of technology in the art world.

“I think a lot of people are scared that their jobs – their livelihoods – are going to be obsolete,” he muses. “But I think what foundries and people working in the art industry need to realize is that this is a tool that can make their lives a lot easier, and if they can work with it, they can produce a lot more work a lot more efficiently.”

Caswell has fully embraced the power of technology to transform business, and he understands firsthand that this is not something that poses a threat to his career or the artists with whom he works. “They’re still going to need to cast all these parts as if they’re wax: weld them, gate them, dip them in slurry, build them, and color them, just like they have for the last couple thousand years.”

The Model T Project

It was a particular project that spurred Caswell into the world of 3D printing: the memorialization of a famous Oregon landmark.

“We got the Gigabot when we got our first big project of 3D printing the Model T car, and that’s how we were able to skip the mold on that.”

Prior to 3D printing, Caswell aided artists in taking their work from model to bronze sculpture using a CNC machine. “At the beginning of business, we started off doing foam enlargements where the artists would bring us a maquette – like a small sculpture – and we would 3D scan that and use the CNC machine to enlarge it in foam.”

And although a big advancement from having to sculpt a piece in full by hand, this method came with its downsides. The porous foam still required artists to put clay on top of the form and re-sculpt the details, and then a silicone rubber and hard shell mold had to be made over the entire surface of the piece.

“It’s a very costly and time-consuming process,” explains Caswell. “If it’s a one-of-a-kind piece, you now have a big mold that you’ve paid a lot of money for that’s completely obsolete.”

But this was the standard process for large pieces of work; for smaller ones they turned to a Stratasys Objet Printer. “It hasn’t been used in three years,” says Caswell. “It’s a very, very costly process where it could cost over $1,000 for a liter of this resin, and so you would only do really small things.”

Then came an opportunity to create a one-of-a-kind piece to commemorate the 100th anniversary of the first scenic highway in the US: the Historic Columbia River Highway. The 75-mile stretch of road through the Columbia River Gorge was to be memorialized in a statue of its creators – Sam Hill and Sam Lancaster – and the car they first drove on it: a Ford Model T.

Caswell started in the way he traditionally did, sculpting the piece in foam. “We realized how long it was going to take to get all those perfect shapes, and form the tire, and do all that detail work,” he recounts. “Then we had mold makers starting to bid it and the costs were just getting really, really high.”

Rip Caswell came to his son to see if there was another way. “He knew I was doing some 3D printing,” Caswell recounts, “and he said, ‘Can you look into this and see if there’s any way to bypass the mold and just design in the computer and 3D print it.’”

Caswell started by talking to the foundry about the ideal specs of a printer to fit into their casting process. “There’s lots of little printers out there that are inexpensive,” explains Caswell, “but the foundry was saying that the printer should match the slurry tank at the foundry. The volume of that that they can reasonably pour is two foot, by two foot, by two foot.”

A search on the internet led Caswell to a printer that fit the bill.

“I looked around and that’s when I found the big Gigabot that was going to be able to handle our printing volume,” he says. “It’s exact same parameters as the foundry, so anything I print on there I can directly go to the foundry and not have to worry about size issues.”

Their first foray into the world of bronze casting directly from 3D prints was a success. “It worked out perfectly,” says Caswell.  “We were able to directly invest the 3D prints into the bronze. We saved a ton of money and a lot of time.”

Caswell remembers some of the numbers they were quoted by mold makers for the Model T project prior to their Gigabot purchase. “We had a couple people bid the mold, and it could have cost maybe three or four times what it would cost to print it.” And that, he explains, was only for the mold, and not counting the sculpting and original design work that would have been required.

“That would have been very costly and could have taken months of work, whereas the Gigabot was able just to run 24/7 and 3D printed it perfectly, ready to go.”

A Life Size Lion

Caswell has been met with a lot of excitement from his clients about the power of the technology he’s using.

Even if a job doesn’t go through, he says, “they’re excited to know the project can be printed no matter what.” Having the ability to print such large panels for bronze casting has opened the door to big ideas, and Caswell is in the fortunate position of being able to entertain them.

“We have a lot of jobs that come to us, and being able to say the sky’s the limit to our clients is pretty awesome.”

One such job that Caswell has recently taken on is the 3D printing of a life size lion.

He had already done a smaller lion – “about quarter scale,” he says – so he was able to scan that and enlarge it for the new job. This is where 3D printing comes in handy, Caswell explains. “You’re able to take something small or large and blow it up or shrink it down using 3D scanning and 3D printing.”

The piece is notable, Caswell says, “because of how big it is, but how simple the Gigabot made it.”

“The body size is perfect,” he explains. “I 3D printed the entire torso in one section.” The large 3D printed pieces then make it very easy for the foundry to cast and assemble.

The process sans 3D printer would be a lot more laborious, Caswell explains. “If we didn’t have the Gigabot, we would have to mold it out in foam and spend a couple months sculpting it, redoing all that detail that was originally there, and then another couple months molding it.”

And from a time standpoint, it’s night and day. “I 3D printed the lion in three weeks and it’s already ready for casting,” says Caswell.” From there, it’ll probably only take them 12 weeks to finish it. The entire project will take about five months, whereas the old way of sculpting it could take over a year.”

The price difference, he underscores, is also substantial. It’s not a ten or 20 percent savings, it’s more like 50 or 60 percent.

3D Printing: The Future for Artists

“3D printing is definitely the future for future artists,” Caswell muses.

There are so many benefits in several different departments, he explains, from the time savings, to the costs savings, to space savings.

“With 3D printing, we have the ability to digitally store sculptures in the computer.” What this means is that molds that would typically take up valuable floor space can now be stored on a hard drive.

“We can save a lot of space at our foundry which is huge concern because we hold on to all of our clients’ molds all in the same building,” Caswell explains. “Being able to throw away the ones that are being unused and store those files digitally is pretty great.”

Aside from taking up precious real estate, physical molds are also subject to degradation over time.

While it would be great to have molds on hand from a previous sculpture commission if the artist wanted the piece casted again in the future, the quality of that mold after a few years’ time is going to be compromised, and the final piece will take a significant amount of finish work and extra bronze. “Knowing that at any point, I can fly down to where that sculpture is and 3D scan it, come back home and 3D print it on the Gigabot is very reassuring,” says Caswell.

Caswell sees 3D printing as leveling the playing field for artists.

“I think it opens up a huge opportunity for people who are looking to pursue art as a career; being able to start at their computer rather than worrying about renting out a studio or destroying their home with clay,” he explains. “They’re able to work digitally in a clean small workspace, and, with 3D printing, go directly into the foundry.”

Project storage is also just as much a concern for artists as it is for foundries. “A lot of artists have to store their own molds in their house,” says Caswell. “Sometimes they’ll do a big job, and they spent five or ten thousand dollars on those molds. It seems weird to just throw them in the garbage after the projects.”

Much like foundries, many artists thus end up holding onto old molds on the offhand chance they want to cast them again.

A better option, says Caswell? “They can come to me, I can 3D scan it and give them a flash drive they can fit in their pocket, and that’s all they need.”

Learn more about Firebird 3D and the digital services they provide artists: https://www.firebird3d.com/

Check out the foundry portion of the process at Firebird Bronze: http://www.firebirdbronze.com/

Morgan Hamel

Blog Post Author

The Last Lockdown

It’s a disturbing sight. The desk is scratched with graffiti, and a terrified-looking figure cowers underneath – a small girl – with fingers wrapped around one leg of the desk.

The haunting scene is only a statue, but the fear conveyed on the young girl’s face is real. The statistics etched into the surface of the desk say it all: “During the 2017-2018 school year, the US averaged more than one school shooting per week.” “Guns are the third leading cause of death for American children.” “22 kids are shot every day in America.” They go on.

Sean Leonard and a collaborator are the creative duo behind the jarring sculpture. Both senior creatives in the ad industry in Austin, Texas, the two were spurred on by the tragic school shooting in Parkland, Florida to put their advertising skills to work for a good cause.

“We were inspired by the youth who were taking charge and making their voices heard,” recounts one artist. “They were – and still are – desperate for the issue to remain top of mind. Unfortunately, we knew the issue of gun violence against kids and students would fade from the news cycle after a while until it happened again. This project is our way of drawing – and keeping – attention on the issue.”

The piece is in fact more than just one statue: it’s ten, scattered across the country on their September 15th reveal in cities from Irvine to Parkland.

The statues were strategically placed in districts “represented by members of Congress who receive a significant amount of money from the gun lobby,” explains the artist. The timing is no coincidence: it’s back-to-school season and midterm elections will be taking place in just a few weeks.

“We know the gun issue is a sensitive one with strong opinions on both sides and that one stunt or installation won’t solve all our problems,” says the design team, “but we want to engage both sides.”

The idea for the piece came about because they wanted to bring attention to an ugly truth that many prefer not to think or talk about.

“Even for parents, it’s difficult to imagine the drills their sons and daughters are being taught in school,” one of the artists says. “So we wanted people to not just conceptualize it, but really see it and feel it.” The drills alone can be a taxing experience for kids, and, as he puts it, “it’s important for that emotion to be relayed to adults.”

They settled on a sculpture for its interactive nature as well as its realism. “A three-dimensional statue forces you to stop and look at it. It’s tactile – you can go up to it and study it, touch it, interact with it,” says the artistic team.

“Another reason we thought this statue was interesting is because it flips what a traditional statue represents,” he says. “Most statues are celebratory or honorary. This captures a moment that should make you uneasy and your stomach a little unsettled. We wanted that emotive reaction.”

Design & Fabrication of the Statues

With the idea born, the pair began making moves to bring the project to fruition.

“After we came up with the idea, we brought on colleagues who could help us bring it to life,” the artist recounts. Caleb Sawyer was their go-to 3D modeler, and with a CAD sculpture in hand, they began pitching the idea to organizations within the national gun reform movement.

They immediately got a positive response from Manuel Oliver, whose organization Change the Ref works to raise awareness about mass shootings and reduce the influence of the NRA on the Federal level. Oliver’s son was one of the 17 murdered in Parkland.

The pitch also piqued the interest of Giffords, a prominent gun reform organization started by Gabrielle Giffords, the US Representative from Arizona who survived being shot in the head in an assassination attempt as she met with constituents.

The two uniquely-impacted individuals came together to lend their own touch to the project. “Mr. Oliver collaborated with us to refine the design of the statue and led the push to make it a guerrilla-style national launch, and Giffords funded the project and is bringing it to life,” explains the designers.

The actual creation of the statues posed its own set of challenges.

“Our first thought was to do a bronze casting,” says the team. But they quickly discovered that process would be both cost- and time-prohibitive. They looked into other materials, like foam. “What it came down to, ultimately, was what gave us the most realism and what was most cost-effective,” he recounts. “3D printing pretty quickly became the obvious choice.”

They decided on a multimedia approach: they would 3D print the girl and use a real school desk, both finished with a post-processing technique to lend a bronze-casted look to the piece

The perk of using Gigabot for the project is that the girls could be printed all in one go, with no need to affix different sections post-printing. At a height of about two feet, they fit easily within the build volume of the Gigabot XLT. The ten girls were printed in our Houston office and sent to PBE Exhibits where Adam Fontenault handled the post-processing.

“Our main goal throughout this part of the process was realism, from the size of the statue to the look on her face,” the design team says. “We even wanted the faux bronzing to look as realistic as possible. Adam lightly sanded the printed statues and primed them to smooth out any visible print lines. He used a mixture of materials to achieve the lightly-patinated bronze look.”

The result is a statue that looks casted, at a fraction of the price and time it would have taken to go through that process.

“We’re thrilled with the final outcome,” says the team. “She looks very lifelike, and the detail on the print is amazing. The bronze paint brings out additional features and makes the whole statue really pop.”

Prompting Policy Change and Conversation

The installation has gotten some major press following its September debut, making headlines in AdweekThe Washington Post, and CNN, among others. It’s a big step for visibility of the project, whose intent is severalfold.

“The first is to raise awareness of how pervasive the issue of gun violence against children really is and to force people to confront it,” the designers explain. “The second goal is to show how art as activism can be a vehicle for positive change. And the third goal is to educate people and motivate them to demand change.”

It’s a hot-button topic with many complicated layers, but Crumrine and Leonard hope that the installation can break through partisan arguments to the ultimate message: keeping kids in school safe from gun violence.

“Inevitably, this issue is loaded with political baggage,” says the artists. “But we’re hoping this project can at least focus the conversation around how to keep our nation’s children from being innocent victims.”

The idea is to spark policy change as much as it is to spark conversation.

“We hope we get strong reactions from both sides. We want it to be uncomfortable to see because it’s an uncomfortable thing to talk about,” the artists explains. “There will always be people who viscerally accept its message or viscerally reject it. But we want the people in the middle to consider what it’s actually saying.”

And as for the name of the cross-country installation?

“The title of the piece is ‘The Last Lockdown,’ because that’s the ultimate dream outcome,” explains the artists. “We want to help create a world where we’ve already seen the last one, but we’re not naïve enough to think it’ll happen overnight. This is hopefully a step in that direction.”

The Last Lockdown statues can be seen in the following ten cities:

Irvine, California

Parkland, Florida

Sarasota, Florida

Philadelphia, Pennsylvania

Houston, Texas

St. Paul, Minnesota

Las Vegas, Nevada

Denver, Colorado

Milwaukee, Wisconsin

Spokane, Washington

Morgan Hamel

Blog Post Author

Monumental Sculpture Bronze Casting with Deep in the Heart

2022 UPDATE: DEEP IN THE HEART IS NOW PYROLOGY FOUNDRY & STUDIO

It’s a sweltering, sunny July day in the small Texas town of Bastrop, and two men in what appear to be suits that you might wear to descend into a volcano are pouring what looks like lava from a cauldron.

I’m at Deep in the Heart, the largest fine art foundry in Texas, and I’m witnessing a bronze pour.

Clint Howard bought the foundry in 1999 and has grown it from five employees and 1,200 square feet to a team of 34 and about 22,000 square feet. “We’re like a publishing house,” he explains. They work with 165 artists around the world and turn their work into bronze or stainless steel monumental sculpture.

The bronze casting process – called lost-wax casting – is a 5,000+ year old art still being done in the same fashion as it was millennia ago.

“It’s a five generation process,” Clint explains. They start by creating the original sculpture, then making a mold on that sculpture, and then making a wax copy of the sculpture. A ceramic mold is made on the wax copy and flash-fired at 1,700 degrees to melt the wax out – hence the name lost-wax casting. With the wax gone, they’re left with a ceramic vessel that they can pour molten metal into, leaving them with the final sculpture.

Ten years ago, Clint decided that the business needed to start embracing technology.

“At the time, my focus was on 3D laser scanning and CNC milling,” he explains. “We got into the industry by buying a scanner and a huge CNC mill.” They would scan the sculpture and mill it piece by piece out of styrofoam.

“We did a lot of work for a lot of different artists in this technique,” he recounts, but, as he explained, “you still have to sculpt the whole piece full-size.” Clint describes the process as a huge “paint by numbers.” The styrofoam model gives them the outline and where the detail should be, but they still have to do all the fingerprint detail by hand with clay on top of the styrofoam form.

3D printing really wasn’t on their radar, Clint explains, until several years later.

Life Sized Dinosaurs

Clint got the fateful phone call four years ago from a dinosaur museum in Australia with a project proposal. “They wanted us to produce a herd of dinosaurs and they wanted to prove that it could be done all digitally,” Clint recounts.

The sculptures of the dinosaurs had been modeled in CAD, and the museum wanted Deep in the Heart to 3D print them in a material that could be direct-cast, circumventing “a whole lot of steps” in the casting process, in Clint’s words.

“Of course we had no idea what they were talking about or even where to start,” says Clint, “but they had done the research.” The museum had found Gigabot through Kickstarter and thought it would be an ideal fit given the proximity of the re:3D office to the foundry. “They basically said, ‘We want to do this – how many dinosaurs will this much money get us?’”

Deep in the Heart got their first Gigabot and quickly started experimenting how to best integrate 3D prints into their casting process. They ended up with 14 life-size dinosaurs – a nine-foot-tall, 13-foot-long velociraptor chasing a herd of smaller dinos – which now reside outside the Australian Age of Dinosaurs in Queensland, Australia.

The cost-savings of the project using the new 3D printing method were dramatic.

“To get 14 dinosaurs produced and installed for, let’s say, $120,000,” Clint says, “to do that traditionally – to have sculpted them full scale, to have molded them full-scale, and gone through the traditional lost-wax casting – we would’ve gone triple budget.”

"Unforeseen Benefits"

The dinosaur project was four years ago now, and Clint has since added two more Gigabots to their arsenal. “We bought the second one almost immediately and eventually decided we needed a third one,” he recounts.

Deep in the Heart’s specialty is monumental sculpture: their business is making really large pieces of art. “By having three [Gigabots],” Clint explains, “I can be printing three simultaneously, run them 24 hours a day, and it allows us the capacity to move a bigger piece through quicker.” They could do the job with one machine, he explains, but they want to move faster.

002

The benefits of incorporating 3D prints into their casting process have been unexpected and multitudinous.

“One of the unforeseen benefits of 3D printing that I really didn’t expect in the beginning is the consistency and thickness that we can generate in the computer is far superior to anything that we can do by by hand,” Clint muses.

The traditional method is less precise: pouring molten wax into a mold and pouring it out, or painting liquid wax onto the surface of a mold. “We’re trying to gauge that thickness by experience; which direction the wind’s blowing that day,” Clint remarks. “I mean, we’re trying and we can get fairly close, but we have variances within our thicknesses.”

This means they’re often using more bronze in a sculpture than is actually necessary – yielding costlier pieces – simply because the wax mold is made by the imperfect human hand.

Replace the wax mold with a 3D printed one, and the thickness is now precisely and uniformly set in the computer. “It’s going to be exactly that consistency through every fold, every detail,” says Clint.

img_3362

“That really allows us to control our costs,” he comments. It also unexpectedly increased the quality of their casting, because with the 3D prints – as opposed to wax molds – “there’s no movement.”

“Wax is innately flexible,” Clint explains. Large sculptures are cast in many different sections – the massive buffalo they’re currently working on will be 30 or 40 separate pieces – and “each of those sections has the potential to warp slightly.” That means they’re often hammering and muscling the different pieces into alignment when it comes to assembling the final sculpture.

“With the 3D prints, they don’t move. At all.” Clint estimates that the assembly time of a monument that’s been 3D printed is about half that of one cast using wax molds.

The Rule of Three

“Most of the time when a commissioning party is asking for a monument to be made, they’re asking it to be a unique one-of-a-kind,” says Clint.

He explains that 99% of large sculptures out there start their life as a maquette – a miniature version of the big one. “That small maquette is where all the design work happens. It’s where all the artistic creativity happens.” The full-size sculpture is then just a mathematical formula of duplicating the miniature.

“Where 3D printing comes into play,” he explains, “is you don’t have to sculpt it big.”

They can take the small model, whether they sculpted it traditionally and then 3D scanned it, or whether they modeled it directly in the computer using CAD software, and they can print that model full-scale. This cuts out multiple parts of the process: they no longer have to sculpt full-scale, rubber mold full-scale, or make a a full-scale wax copy.

“I mean, you can literally just go straight from the printer into the ceramic shell process, and then you can cast.” The PLA material they print with burns out almost identically to wax, he explains.

It’s a huge time, energy, and cost-savings for them as a foundry. And for the artists, as Clint puts it, it allows them to go big faster. “It also allows artists to be more competitive because there’s not all those steps they’re having to pay for.”

Clint describes the cost savings rule of thumb as a “rule of three.” If a certain piece is going to be produced more than three times, “it might be cost-effective to do it the traditional method of actually sculpting the piece full-scale and making a mold on it,” he says.

“But if it’s going to be produced three times or less,” he explains, “the 3D printing route is cheaper.”

Where History and Technology Melt Together

“The cool thing about what we do is there’s always some historical significance,” explains Clint. “There’s always some story. What we’re doing is more than just an object.”

He’s referring specifically to the foundry’s focus at the time of this visit: a piece called The Splash, which is now installed in Dublin, California.

The sculpture pays homage to the role that a natural spring has played in the growth of the city, dating back to a Native American tribe. “The water is a very integral part of the city’s history,” explains Clint. “It’s also a very integral part of the native Americans that still live there, because the whole reason that this area was settled was because of this spring.”

The piece is 150 feet long: a large fluid-looking figure from which seven splashes emanate. Clint walks through the design: a water spirit has skipped a stone, causing these seven splashes. Each splash has a harmonic frequency superimposed into its face, which, Clint explains, is a “very specific part of the story.”

He goes on to recount that in the 1960s or 70s, the only surviving members of the tribe who still spoke the native tongue passed away. The tribe had lost their language.

In the 90s, anthropologists visited the area with wax cylinder recordings taken by anthropologists in the 1910s and 1920s who visited and recorded their language. “Luckily enough,” Clint goes on, “the elders in the community remembered their grandparents speaking the language enough to be able to help the anthropologists pull the language out of all of these recordings.”

Since this visit in the 90s, the tribe has now rediscovered their native language, and the sound waves on the surface of the bronze splashes pay homage to this.

“What we’ve got in all of these splashes is seven generations of members of the tribe saying ‘Thank you’ to the water spirit,” Clint explains. “That harmonic pattern is their voice frequency that was taken by technology, and then visualized in technology, and then superimposed on this sculpted splash in the computer, and then 3D printed so that each one of those splashes has the fingerprint of the voice of a [generation] of this tribe saying thank you.”

The impact of technology is woven throughout the story, from the rediscovery of the tribe’s native language to the creation of the sculpture to commemorate the role of water in the city’s history.

“It’s amazing,” Clint remarks. “Technology allowed it all to be created in the computer. The piece was 100% sculpted in 3D software and the monument has been 100% 3D printed and cast using the technology.”

Blending Old and New

It’s hard not to draw parallels between Clint’s commentary about the future of bronze casting and The Splash piece which his team produced.

The role of technology is steeped in both narratives. It’s been a tool, an enabler, a key to unlock a language and make a commemoration of that feat come to life.

And yet there can be pushback within the industry, resistance to the introduction of new technology that some see as a threat to the art’s centuries-old roots. “It’s a fine line to keep all of the ancient technology and the ancient techniques, and marry them with all this new stuff,” Clint comments.

But the basic process as the industry knows it is not going away, Clint explains.  “We’re still going to have to go through casting the same way,” he says. “What I’m starting to realize in the industry is that the traditional method will probably never die.”

Yes, several steps of the process are replaced by a single 3D print, but the piece still must be sculpted – whether physically or digitally – the bronze still must be poured, the sculpture still assembled and given its artistic hand-touch. The heart of the casting process is still very much there.

“But,” he goes on, “right now, I have probably 6,000 square feet of mold storage. Those molds are susceptible to handling, they’re susceptible to human error, they’re susceptible to just degradation over time.”

He sees a not-so-distance future where molds are obsolete, where a quarter of his floor space suddenly and miraculously becomes free for other use.

018

“What the technology is leading me to believe is that very shortly, we’re going to have cloud based servers holding 3D files that represent the mold of the part,” he explains. “And now we can make that part any size we want. We can make it a little tiny miniature for a role playing game, or we can make it a 25-foot-tall monument to go in front of a casino in Vegas.” There’s no need to make a new mold for each varying size of a sculpture – it’s all done digitally – and the only storage space being used is on a hard drive.

Clint’s sights are set on the future, on the next generation of bronze casters.

“The artists that that are coming up and the artists that are going to be doing these monuments in 50 years, they’re all sculpting in the computer right now and they’re playing video games right now and they’re going to embrace that technology and that process.”

Clint has a profound respect for the age-old casting tradition, and he’s also a businessman. It’s his forward-thinking vision and willingness to dive into unknown territory that has helped him grow Deep in the Heart over the last nearly two decades.

“It is an amazing shift, and I definitely think that for the art foundries in the country to stay on top of it, they’re going to have to be embracing this technology and watching what’s happening and paying attention to all of these changes.”

Learn more about Deep in the Heart and their work on their website: https://pyrology.com/portfolio/

Morgan Hamel

Blog Post Author

The Mannequin Challenge

The Greneker office strikes me as a place you wouldn’t want to be stuck wandering at night, what with the bodies lurking around each corner. I scheduled my visit for early afternoon.

Greneker is a mannequin manufacturer based in Los Angeles, California. They’ve worked to stay cutting-edge in their industry since they started in 1934, always keeping pace with the latest groundbreaking materials and manufacturing methods, like moving from plaster to fiberglass around World War II.

They’re proving that even an entrenched player in the game isn’t too old to learn new tricks: their latest foray is into the worlds of digital and 3D printing.

Steve Beckman is President & COO at Greneker, and he’s been a part of the evolution of the company over the last 2+ decades as they’ve set themselves apart in their industry.

When I started with this business, we would get together as a group, we would look at the trends in the marketplace, and we would develop a line based on what we saw happening in the marketplace at that time.” It was a big gamble – the process was both costly and time-intensive – but that was just business as usual for them. “That was done with clay sculpting, so we would start with armatures and clay, go through the process ourselves, create an entire line of mannequins, and really just kind of rolled the dice and hope that it would sell to that market.”

Whereas they began by working independently from apparel manufacturers, Greneker found themselves doing more and more custom work for specific clients. They found their niches in the athletic wear and plus size markets, and working with big-name clients like Under Armour and Adidas in the clay design process provided its own set of challenges.

“It was a very long process to develop a line of custom mannequins,” Steve explains. “We would have to spend a great deal of time upfront with a client trying to figure out what they were looking for, what the poses were, what the dimensions were, what sizes these pieces were. The armatures would be set up by hand, the sculpting would be done by hand in clay. It would require several visits of the client on premises before we got an approval to move into the molding process to begin production.”

When working with athletic apparel clients, the challenges multiplied. As they started to get into sports-specific activities, posing came to be of utmost importance. “The poses are either accurate or they’re inaccurate,” Steve says. “If you try and put a golf mannequin in a golf shop and he is not in the proper position, the mannequin will be ripped apart by patrons.”

If you want to talk with someone about whether Greneker is in fact a creepy place to be stuck at night, Daniel Stocks is your man. As Senior Sculptor at Greneker – or Sculptor Extraordinaire, as Steve tended to refer to him – he’s the one responsible for following through on all those client requests.

“A lot of the time I would work late at night making all these adjustments and changes while the people are in town so that they [could] see it the next day,” Daniel recounts. And that was after starting from scratch on the figure: constructing a metal armature and building up the clay by hand.

True to their trailblazing past, Greneker began searching for ways to update their process and make themselves more efficient.

“We started to look at digital as a way of creating these pieces, and creating them precisely and accurately,” Steve recounts. “We’ve now moved from clay sculpting to everything being 3D printed, which has helped us in a myriad of ways.”

The 3D Printed Mannequin Challenge

Greneker dipped their toe into 3D printing with a smaller-scale CubeX and quickly realized the potential of the technology.

“We felt as a company that this was the direction that we needed to take, and we needed to go full steam ahead before some of our competitors became aware of the technology and started utilizing it,” Steve shares. They wanted to gain the competitive advantage before others caught wind of what they were doing. “And that’s one of the things we have done, we’ve positioned ourselves as the experts in this type of mannequin design.”

They purchased a few other small 3D printers, and then Daniel began the hunt for a large-scale printer with the right price tag. He came across Gigabot.

“Well, there was really nothing else on the market within a reasonable price point that would make pieces big enough for a full body,” Daniel muses.

“We selected the printer based on, again, the human body,” Steve explains. “We’re a mannequin manufacturer. We wanted larger printers to be able to print torsos and legs.” Their 3D printer arsenal includes a range of machines, from small-scale printers good for the details on hands and faces, up to the large size of Gigabot for cranking out large pieces.

“The challenge for us and my challenge to Daniel was to get a full-sized mannequin printed in one day,” Steve smiles. “It takes about 250 hours of print time to print a mannequin. In order to print it in one day, it was going to take a bunch of machines.”

Take a stroll through their office and you’ll come across the realization of this dream: a separate room tucked within their main sculpting area which they built specifically for 3D printing. “The Gigabots work fantastic for large-sized pieces, so we bought a bunch of them,” Steve recounts. Greneker is now up to four Gigabots – stacked two-by-two and suspended from the ceiling – which they house in this room along with their smaller-scale machines so they can run 24 hours a day.

“Before 3D printing, it would’ve been just unthinkable to make a mannequin in a day,” Daniel muses. “Now it’s actually possible.”

“A Myriad of Benefits”

Steve explained that the benefits that came with moving from clay design to digital and 3D printing have been numerous. The biggest savings may be from a time standpoint – they’re cutting from every aspect of the preproduction process.

“We save time throughout the entire process,” he shares.

Because everything is now digital, they no longer have to bring clients in to see mock-ups in person during the design process. “Instead of having clients visit, we can have video conferencing now, which accelerates the initial consultation period greatly,” Steve explains. “The client can sit on the other end – whether they’re across the country or across the world – and in real time we can make those changes and those tweaks to make these pieces exactly what they’re looking for.”

Daniel is particularly happy about this aspect as well. He still sometimes has to work on a time crunch, he explains, but “it’s less physical and it allows a lot more flexibility,” he explains. “If I have to, I can work from home on the computer and makes adjustments. It’s a lot quicker.”

“What,” you may ask, “does he mean by ‘physical?’” Miniature, scaled-down models of a mannequin to show clients weren’t possible before 3D printing, because the mini and full-scale versions can differ so much when working by hand in clay. So, as Steve recounts, the sculptors had to work in full-size clay as they went through the tweaking process, often while the clients were there in person. He explains, “We would bring the client in and then the sculptors would wrestle with the clay in front of the client until we got it to where it needed to be.”

No more mannequin manhandling. “With 3D printing, we take the digital model and we’ll produce a scaled model, usually about 18 inches tall, and then we can send that to the clients,” says Steve. “They can make sure that all the measurements fit where they like and that the posing is what it needs to be in. Once we get the sign-off at that point, then we produce a full-scale 3D print.”

Greneker will print a full-size version of the mannequin, which, with a little sanding and painting, will function exactly like the final mannequin, albeit not in the final material. That gets shipped to the client where the stakeholders can review the piece exactly as it will look in production.

This is immensely helpful for another portion of the process: the sign-offs. In the past, Greneker had struggled to get all of a client’s decision-makers in the room at once. “We would have a group of people come visit us that may or may not represent all of the stakeholders involved in the development,” Steve explains. “Ultimately, whatever approvals or opinions we received at that point could be superseded by someone else that hadn’t been here.”

That frustrating portion of the process is completely removed now. “With this new process,” Steve says, “the model goes in front of everybody, so it’s there for everyone to look at. You get a much, much tighter buy-in much more quickly.”

And of course, in the actual design process itself, the digital realm has also proven itself to be a clear winner over clay. “If you do something in clay, you do it by hand,” says Steve. “You can’t necessarily repeat that.”

No one is likely a bigger fan than Daniel. “It opens up a lot of new tools,” he explains. When designing a head, for example, he can take advantage of the symmetry tool in CAD. The work he’s done on one side of a face is automatically mirrored to the other. “Before, working in clay, we would have to try to make adjustments – ‘Which ear is higher? Are the eyes straight?’ Things like that it makes much simpler.”

It also aids with consistency and continuity if different sculptors are working on the same body. “If I have a large project and I have three sculptors working on it, because it’s three sets of hands, it may not look identical,” Steve explains. “With the digital design, we don’t have to worry about that. The design is the design and you can move it, change it, scale it, but it’s always the base design and it’s always obvious what it is, no question.”

The slashing of time from every part of the preproduction process goes hand-in-hand with cost-cutting. “Internally for the business, the change has been much more cost-effective,” Steve shares. “When I started, we would create lines based on – when it’s all said and done – it’s spaghetti on the wall. It’s our best guess of what was going to sell. We don’t have to do that any longer.”

That gamble used to be a risky one.

“When we did it in clay, you had to commit to it. Clay’s only got a very limited shelf life,” Steve explains. With CAD replacing clay at Greneker, there’s no more wasted effort and materials going into a design that doesn’t sell. Now, Steve says, “We can put a design that we think is cool together digitally and it can sit there as a model until there’s a market and a place for it.”

An Industry in Flux

“The apparel retail industry is in a great deal of flux right now,” Steve explains. “Online sales have really started to affect their brick and mortar sales. I don’t foresee some of the large scale roll-outs in malls in the near future, but what we do see is the need for smaller runs of more specific posing.”

And this – thanks to their calculated research and work – is where Greneker excels.

“What we see going forward is we need to be much more nimble, much faster, and much more cost-effective on the development side so that the retailers can afford to bring in specific mannequins for specific markets,” says Steve.

Greneker’s hard work to modernize and streamline their mannequin production process has paid off. “The marketplace is requiring speed to market. Everything has got to be done sooner rather than later,” Steve explains. “When we would sculpt and create a new line by hand, the process could take upwards of six months in preproduction. In 3D printing, now we’ve reduced that process to where it can be as short as just a few weeks.”

The tedious parts of their old process -the gambles on trends, the risk of botched posing, building up new armatures and clay bodies by hand, the endless on-site client visits to make tweaks and get approval – all of that is now off their plate.

“Right now, we’ve just finished realizing our first set of goals with 3D printing,” says Steve. “Our future goals: we’re going to bring in as many printers as it takes to be the absolute fastest to market as we can be. We want to stay ahead of our competition.”

Learn more about Greneker: greneker.com

img_5000

Morgan Hamel

Blog Post Author

All About Our 2017 Gigaprize Winner: Magic Wheelchair

If you’re just tuning in, the winner of the Gigabot given away through our 2017 Gigaprize is an unbelievably deserving organization called Magic Wheelchair. We thought you might enjoy learning a little bit more about what they do and how they will be using Gigabot. We guarantee it’ll bring a smile to your face.

The Origin Story

Life for kids who are in wheelchairs often have a difficult life. Sometimes their local schools have failed to get an ada inspector in to make sure it’s accessible for them, they are often in and out of hospital, it can be hard for them to socialize are just some of the issues they encounter. But Magic Wheelchair is trying to make their lives a little bit better. Magic Wheelchair is a non-profit which “builds epic costumes for kiddos in wheelchairs — at no cost to families.” That’s a mission that resonated strongly with the public as well as our Gigaprize judging panel, ultimately crowning this Oregon-based organization the winner among a strong group of contenders.

bobby

The idea was born out of a father’s love and creative energy. Ryan Weimer, the brainchild behind it all, conceived the idea after making a costume for his then three-year-old son, Keaton, who has Spinal Muscular Atrophy. The experience was life-changing and eye-opening for both Keaton and Ryan.

People seemed to look past his “disability;” they looked past his wheelchair and saw this cool kiddo cruising around in a pirate ship. Where normally other kids who didn’t know Keaton would stare from a distance, this costume created an immediate and intense level of inclusion. Kiddos swarmed him in his Pirate Ship Costume! That experience was amazing for all of us. As a dad, I looked with tears in my eyes as I finally was able to see people looking at my son like I do. I thought about other kiddos and families like mine that would, in my mind, love to have this same experience. That is the origin story of Magic Wheelchair.

Magic Wheelchair was born.

The Process

Magic Wheelchair works with a network of country-wide volunteers which form local teams of builders to make the magic happen.

“We have a Builder’s Manual which lays out the process, helps our volunteers put a build team together, and also helps them in getting their community involved by fundraising and reaching out for local community support,” Ryan explains. “This is a wonderful way to build awareness in a community about families and kiddos like mine.”

Their first year, the organization built eight costumes, tripling to 24 their second year, and topping out at 50 last year. Their volunteer-based process and Builder’s Manual allows them to have a wider reach than if they were to rely on just one centralized headquarters team. “These are built all over the country! Local builders building for local kiddos.”

They’ve also received some amazing support along the way, building a relationship with the Stan Winston School of Character Arts. “The co-founders Matt and Erich both serve on the board of Magic Wheelchair, and as part of this amazing connection all of our volunteers get access to the school,” Ryan says. “We have cream of the crop special effects artists helping our build teams! The school has completely changed how I take a build on.”

The Magic Wheelchair and re:3D Worlds Collide

Costume-building has always been a strong use case for 3D printing.

It’s often faster and cheaper than the alternatives, which could be anything from building and sculpting pieces by hand (time-intensive), or getting custom pieces made by a third party (costly). 3D printing also allows for quick and easy replication of parts- design one piece and you can just as easily print several for multiple costumes. We have quite a few Gigabot owners making custom costumes for Halloween, Comic-Cons, and cosplay events.

Through the collision of these two worlds and the power of social media, word of the Gigaprize found its way to Ryan.

“We had a volunteer who met us at the Salt Lake City Comic-Con send us a message through Facebook to apply,” Ryan recounts. “We saw the opportunity and knew we had to go for it!”

The value of this technology in their line of work is unbelievably exciting to Ryan and the Magic Wheelchair team.

This allows us to do so many things in-house: from building kits, to making builds easier, to being able to do really specific detailed pieces and duplicating them for future builds. It really adds to that epic quality that we can kick out. 3D printers are quickly becoming commonplace in fabrication and special effects, so it’s going to be incredible having such an amazing printer in our hands. We have already had some 3D artists reach out to help, and we have a solid connection with Pixologic and the Zbrush community. Sky’s really the limit here!

Future Plans: Shoot for the Stars

Magic Wheelchair’s impact and growth each year has been nothing short of impressive, and 2018 is panning out to be no different.

Though the first costume of each year is always a surprise, they can share the news that they’ll be returning to a favorite annual event: San Diego Comic-Con.

Last year they unveiled five Justice League-themed costumes on stage there with none other than Adam Savage. The segment is featured on Adam Savage’s Tested, Savage’s new project with old partner-in-crime Jamie Hyneman. If you’re having trouble placing their names, does Mythbusters ring a bell?

“This year we will be headed back to San Diego Comic-Con for a Star Wars-themed set of builds,” Ryan says. “We’re stoked!”

He’s especially thrilled that they’re collaborating with artists that currently work or have worked in the Star Wars franchise.

"I feel included."

Our goal with each Gigaprize we run is to get Gigabot into the hands of a deserving group who will put the machine to work doing good. Magic Wheelchair absolutely exemplifies this.

The work they do has ample room for a 3D printer to make a serious impact on their process, with the goal of allowing them to grow their reach by creating costumes faster and more affordably.

Magic Wheelchair’s impact is very real for the recipients of their work, which, as Ryan explains, transcends the category of “costumes.” “What we really are building are experiences,” Ryan explains. “Experiences that allow that barrier of ‘disability’ to essentially be swallowed up by these epic costumes.”

Ryan has been able to see that experience firsthand from day one when he built the very first costume for what would end up being Magic Wheelchair’s first recipient: his son Keaton.

“Keaton mentions this in every interview when he is asked what is his favorite thing about these costumes,” Ryan recounts. “Without skipping a beat he says, ‘I feel included.’ It’s such a beautiful thing.”

Magic Wheelchair relies on its network of hardworking and selfless volunteers. Consider volunteering your time for an experience that’s equally as rewarding for the people behind the costume as it is for the one wearing it. Learn more: https://www.magicwheelchair.org/volunteers

Morgan Hamel

Blog Post Author

When 3D Printing and Nature Collide

The often strained relationship between humans and nature is no more evident anywhere else than in large cities. Trees and fields have been replaced with skyscrapers and roads, and often the little greenery that does exist is confined to highway medians or parks flanked by concrete jungles.

As the world population climbs steadily towards eight billion, our partnership with nature will become increasingly more strained – and more important. Strides have been made in recent years to better incorporate nature into urban life – the New York City High Line or vertical forest skyscrapers, for example.

This intermeshing of nature and technology/design is what excites Yarden Mor and inspired Symbio.

A graduate of a special joint program of computer science at the Hebrew University and industrial design at the Bezalel Academy in Jerusalem, Symbio is her graduation project.

Her goal is to encourage symbiosis between humans and nature through technology. Symbio is a method to connect to existing natural foundations – like trees and rocks – and enable sustainable living preservation while maintaining the comfort we are accustomed to in modern life.

Yarden demonstrated the idea using a fallen portion of tree. Using 3D scanning to create a CAD model of the branch, she can create a design that fits perfectly to its shape. Parametric design simulates forces and optimizes the model’s weight and strength, and the complex digital outcome is birthed into the physical world thanks to 3D printing. Autodesk Tel-Aviv helped Yarden print her prototype on their Gigabot.

In the process of creating her prototype, Yarden researched technologies & materials, development of a system, and created prototypes of applications in urban design. This project is a proof of concept for larger-scale designs involving the same technology.

See more of Yarden’s work on her Instagram @yarden.mor.

Morgan Hamel

Blog Post Author

Hair Dressing the World’s Biggest Hairy Lion Print

The Hairy Lion print is somewhat of a legend in the 3D printing community. It’s a fun one to do, in major part due to the fact that the mane portion of the print can be “styled” after printing using a hair dryer or heat gun.

So obviously we had to get in on the fun and blow the competition out of the water with the biggest hairy lion print — as far as we know — to date.

Download the file from Thingiverse and print it yourself!

Here are the specs of ours, if you’re up for the challenge:

Print time: 46 hours
Layer height: 0.6mm w/ 0.8mm nozzle
Infill: 9%
Material: PLA
Height: 22″ tall
Weight: 14.4 lbs before post-processing ; 10.2 lbs after post-processing

Morgan Hamel

Blog Post Author

Investment Casting with 3D Printing

The following post was written by Todd Ronan. Todd joined the re:3D sales team after hearing a Co-Founder panel discussion on 3D printing & recyclable material at IEEE. From Michigan, parts Northwest, and now Austin (Portland’s si(hip)ster city) he is a Futurist, passionate about evolving technology, dreamer, and enthusiast of fine meade.

The thousand year old lost wax casting process has been revolutionized by the Human-Scale 3D printing of Gigabot

Several re:3D customers have augmented their foundries with Gigabot 3D printers because of the time savings, cost savings, and ability to convert more jobs into happy customers.

In traditional investment casting, a wax model is dipped into a ceramic slurry which is then allowed to dry. The resulting hard ceramic shell is then heated to melt the wax away, leaving a perfect model negative where the wax used to be.

Modern foundries however, have been making the move to 3D printing as a means of creating models for casting. With the ability to use  PLA prints in place of the wax models of old, 3D printing provides a cost efficient alternative method for producing investment casting patterns.

In layman’s terms: hot melted plastic can be printed in any shape, in any size, and allows for a cost efficient alternative to the traditional technique of lost wax casting.

In the past, 3D printers lacked the size to perform life-sized pieces and large format 3D printers, starting at $100K have been cost prohibitive. Enter re:3D’s Gigabot at 1/10th the price. A 3D printer with an 8 cubic foot build space for super-sized 3D printed parts.

Anyone lucky enough to find themselves outside of Austin in Bastrop will notice the beautiful, large bronze pieces of art around the city. These are courtesy of a high-point on the Austin Cultural Map tour, Clint Howard’s Deep In The Heart Art Foundry. Jamie and Clint Howard purchased the foundry in 1999, and have become the premier statuary design and manufacturing business in the state of Texas.

With demand for large pieces the foundry added a Gigabot FDM printer to their arsenal a couple of years ago. Instead of the long curing process associated with wax models, their Gigabot can make any design using standard CAD program, and print HUGE in PLA. It just so happens that PLA burns out just as clean as wax! The cost savings was almost immediate – cutting months and thousand of dollars off traditional casting allowing for increased bandwidth for contract pieces, and substantial revenue increase. With increased demand for printing, Deep in the Heart ordered a second Gigabot printer to keep up with the demand.

Another re:3D satisfied customer: family owned and operated Firebird 3D, located in Troutdale Oregon, recently participated in the Columbia River Highway centennial celebration.  Parts on this Model A (shown below) were Gigabot printed and cast along with this Rip Caswell piece, Devoted Passion, a re-telling of the exploration and creation of this amazingly scenic Pacific Northwest highway.

At Firebird they still use their traditional processes of wax casting but can use wax filament or PLA to print larger bronze pieces. It burns out, leaving a small amount of ash in the shell mold, which can be removed with washing. 3D printed PLA plastic burns out cleanly and is a more durable and more easily handled than a wax part. Chad Caswell (shown below) checks the layer height of their next print. They are, literally and figuratively burning through filament with a cost savings up to 70% by reducing labor!

We just got word Deep in the Heart purchased a 3rd Gigabot to help with workflow and high demand, and now has three 8 cubic foot 3d printers printing (money) while their workers sleep.

re:3D urges: Try a FREE print on us. Find out if Lost Wax (minus WAX + PLA) works for you! Please contact info@re3D.org for additional info on Gigabot 3D printers and lost wax castings!

Mike Strong

Blog Post Author

Architectural Decoration with 3D Printed Molds

“We feel that contemporary architecture is now too minimalistic and the naked buildings have lost their storytelling aspect. In our latest project, we designed human figures demonstrating the anatomy of movement for the façade of a building. We quickly realized our small office 3D printer was too small for the job, which is when we found Gigabot.

0-mhxkbx937aoye5w0ksj51yr531wj8kakes3ev0rl9m
Artist's rendering

We have used Gigabot for producing decorative building components in full scale to be used for exterior and interior design. This could be 3D printing molds for concrete casting or using the printed designs directly on the buildings. We use 3D printing for what it is really good at for architecture: making fine details. And it doesn’t stop there. Concrete printing is developing more and more so hopefully at one point we will be able to print whole houses! 

Everybody said it could not be done, but after a few very entrepreneurial weeks, we got a test plate made. The cost of the plate was 20% of what it would have been had we gone the other route and used a big industrial printer. Four hundred casted plates later, the building with the people on it is the talk of the town in Uppsala, Sweden where it is located.

Concrete panels cast from 3D prints
Concrete panels cast from 3D prints

We invented a new architectural style which we like to call Super Deco, a fusion between super-modern buildings and 3D printed decorative elements. Gigabot gave us the opportunity to make this a reality and to bring character back into architecture. Our hope is that other architectural firms catch onto Super Deco and start to decorate our cityscapes again.”

NEW-real-life-photo-2-mn0jstezednen9w1lpfju9njsh6yngymotm5g5qkq2
The concrete panels in the real world

Morgan Hamel

Blog Post Author