Engineering Updates – 3D Printing, Part Cooling, Firmware and More!

re:3D was on the move last year – literally. But the crew has settled into the new Austin facility with a continued passion for tackling the challenges of additive manufacturing. New faces have joined the Engineering and R&D Teams, and they have all been making impressive progress during the sometimes messy results of a relocation. This is a long-overdue look at some of their recent work.

Early last year there was a company-wide exploration of how and why ‘filament grinding’ was affecting our customers. Follow-up work has focused on cooling methods – both for the extruder mechanism and for part cooling. Improvements in cooling the extruder heat break reduces filament softening (i.e., “heat creep”) in low-temperature materials such as PLA which is a contributing factor to grinding and ultimately print failure. Other thermo-mechanical properties of the extruder are being evaluated as well, with the goal of better thermal management of the filament for more reliable extrusion. Upgrades to part cooling are also being tested. For many thermoplastics, the goal is to extrude above a certain temperature and let the polymer bond to the previously deposited layer (if there is one), and then solidify to maintain the desired geometry as the nozzle travels onward. The rate at which the plastic hardens affects how fast the nozzle can travel without compromising the quality of the print. Often, by appropriately cooling the extruded plastic with forced air, the plastic still bonds, but the geometry is rapidly set and the nozzle can travel faster – ultimately completing the print more quickly. Rapid setting of the polymer also allows for improved performance when printing bridges or overhangs.

With a new approach to thermal management, small, square axial fans are still used to cool the extruder heat sinks, but radial blower fans are used to provide higher-velocity air at the nozzle tip for part cooling (Figure 1, left and center). With this approach, unsupported overhangs of up to 70° are achieved before scoring “poor” using standard overhang print tests. Print speed can also be dramatically increased. The cooling upgrade allowed a standard 3DBenchy model [1] to be printed in 32 minutes with good quality (Figure 1, right) – down from 70 minutes.

Figure 1: New Gigabot extruder cooling design under test (a-B); 32-minute 3DBenchy printed using upgraded cooling (c).

The Engineering Team is also responding to the re:3D user community’s request for a conversion kit to use 1.75mm filament on their Gigabot printers. The new dual-extruder design has been extensively tested on multiple materials internally and will be sent to external beta testers soon.

Product development on the GigabotX (GBX) in recent months has been focused on a mount for a bed sensor to incorporate bed mesh compensation software correction, along with an implementation of part cooling for the GBX extruder. Bed mesh compensation will be performed with the same eddy current sensor now under beta test on the Gigabot filament machines, but the design challenge is to create a mechanically stiff mount at the end of the long extruder system. As part of this mount, cooling fans and ducting are being incorporated to provide forced-air part cooling. The reasons for part cooling are described above, but with the larger bead sizes on the GBX, the thermal mass of the extrusion is generally larger, and the need for part cooling is even more critical – especially for bridging and overhangs. It can also promote easier breakaway of support material from the print.

With the part cooling design now under test (Figure 2), PLA is bridging over 40mm with minimal drooping (Figure 3, left) and able to create acceptable bridges and spans over 100mm (Figure 3, right). Overhangs are also improved, and support structures more easily break away by hand, leaving clean parting surfaces.

Figure 2: Experimental mount for a bed sensor on the GBX extruder shown in green (a); GBX part cooling fans attached to the back of the extruder cover (b).
Figure 3: 60mm bridging with part cooling on a GBX (a); poor bridging and spanning without part cooling (b); good bridging and spanning over 100mm with part cooling (c).

At the other end of the extruder, improvements are underway to improve the reliability and consistency of material throughput. The extruder motor is connected to the extrusion screw through a jaw coupler, which uses a polymer spider interface between two hubs. If overheated or over-torqued, this spider can become deformed, potentially affecting extruder performance. This style of couple also allows for undesirable axial motion of the extruder screw. A new disc coupler is being tested with good results (Figure 4).

GBX disk coupling
Figure 4: New GBX disc coupling under evaluation.

Throughput problems can also be caused when the feedstock (pellets or flake) bridges within the input to the extruder. This material bridging (buildup, jamming, etc) introduces inconsistencies to the flow of material into the extruder which results in underextrusion.

This is more pronounced when using feedstock with irregular morphology and low apparent density (e.g. granulated water bottles), which do not pack tightly or flow well into the extruder under gravity alone.

To address this, over 40 versions of a “crammer” that actively feeds material into the extruder have been tested over the years, with the current version called the “beta” crammer (Figure 5). This crammer successfully reduced inconsistencies in the extrusion rate, successfully printing rPET flake at the same rate as rPET pellet. While the crammer showed great potential for printing with irregular flake, unfortunately material bridging still happened upstream from the crammer (at the hopper-hose and hose-barb connections). To take full advantage of the crammer’s abilities, it is important to design a system to reliably resolve material bridging in the feed tube.

Figure 5: Current ‘beta’ crammer design.

The most important recent design change to the crammer has been to the feedstock hose clamping mechanism. The tubing was originally connected using a metal hose barb and a worm gear hose clamp, similar to garden hoses. Because the hose barb fits inside the hose, the diameter of the feed path decreases at the interface, creating a stepped region that is very prone to material buildup. To address this issue, the hose barb has been replaced with two printed parts that secure the hose from the outside using screws (Figure 6). The new hose clamp design has been tested for well over 100 hours, and showed zero cases of material bridging with all pellets and most flake feedstocks. The flakes that still showed some trouble, including granulated plastic ID cards and shredded water bottles, had particularly irregular morphology due to its original thin thickness.

hose clamp design render
Figure 6. CAD image of new hose clamp design.

For feedstocks with more extreme morphologies, multiple solutions have been considered, including fluidized beds and vibration motors.

The fluidized bed system designed by Dr. Christopher Pannier’s team at the University of Michigan-Dearborn [1] sends compressed air upstream from the feed throat (Figures 7 and 8). With the right combination of air pressure and flow rate, it is possible to create an environment where solid particles behave like a fluid – a “fluidized bed”. Under this condition, flakes can flow freely through the path without building up on top of each other. Dr. Pannier’s team has tested this system to identify appropriate combinations of air pressure, air flow rate, and duty cycle that produce ideal fluidized bed conditions. However, as of today, only one material of controlled sizes (granulated rPLA, sifted 2~3mm) has been tested. To replicate similar results and identify combinations of parameters for other materials and feedstock morphologies, extensive testing is required.

Figure 7: Fluidized bed system implemented on a GBX. (Image credit: Pannier, 2023)
Figure 8. Fluidized bed system configuration. (Image credit: Pannier, 2023)

Another option to reduce bridging is simply attaching one or more motors to the feed tube, generating vibrations or impact to remove buildups. There have been previous investigations into this solution at re:3D between 2021 and 2022, but the team faced issues including vibration-induced fatigue failures in wires and the printed feed throat. Eventually, this idea was abandoned as the team started to focus on the development of the crammer, which increased the throughput of the machine considerably. The vibration motor system helped with the consistency in extrusion rate by breaking up material buildup, but had little to no effect on the extrusion throughput. The vibration motor system could potentially be a great partner for the current crammer system, as they complement each other and address separate issues. The vibration motor system is not only a simple and cheap implementation, but also does not require major modifications to existing parts.

In a recent re-investigation of the vibration motor system, the motor was mounted directly onto the hose – independent from the extruder body or the crammer – such that the vibrations do not affect other systems negatively. Because constant operation of the motor may cause overheating and also accelerate vibration-induced fatigue, the motor was operated with a duty cycle using custom G-code or external python scripts. Quick testing showed promise, as even short bursts successfully broke up any material buildup along the hose. While no quantitative tests were conducted, the effect of vibrations were easily visible through the transparent feed tubing and also on the printed parts that lacked telltale signs of bridging-induced underextrusion (Figure 9). For the vibration motor system to be implemented, it will require a more robust mount design that reduces the noise (currently 50-60 dB) and secures the motor while sustaining vibrations over an extended period of printing time.

Figure 9: Vibration motor attached to GBX feedtube (a); recycled polycarbonate prints without and with vibration motor activated (b).

For now, a few minor tweaks to the ‘beta’ crammer have resulted in reliable and consistent extrusion performance for most feedstock materials and morphologies. But it’s good to have experience with additional options should the need for additional bridging mitigation arise.

Software Improvements

The software team at re:3D is incredible. Their most recent work to improve customer experience with the Gigabot and GigabotX printers includes bed mesh compensation, the new Klipper stack V0.5.0, improved print recovery, and a new web application: Helm.

Mesh Compensation Enhancements

Reliable printing requires reliable, high-quality first-layers. One key factor to a successful first layer is proper bed leveling, or more properly, bed tramming. Manually leveling the large print beds on the Gigabot and GigabotX printers might take a bit of practice, but the system does remain stable – until heat is applied. When materials (especially metals) heat up, they tend to expand. Depending on the mechanical constraints on the object, its shape will change. In the case of a flat metal plate with fixed constraints as shown in Figure 10, heating a print bed can cause bowling or warping at these elevated temperatures. No matter how much you try to “level” the bed, the print nozzle will not remain a constant distance from the bed surface without active correction.

Figure 10: Depiction of thermally-induced deflection of a mechanically constrained bedplate.

Enter “mesh compensation”. In this method, a map, or mesh, of the now-warped bed is measured with a sensor. This heightmap (Figure 11) can then be used in a mathematical algorithm to correct for changes in distance between the nozzle tip and the bed surface, and the firmware will automatically adjust the z-axis height to maintain the appropriate “height”, leading to improved first-layer adhesion, consistency and overall quality.

Figure 11: Bed heightmap generated from the eddy current sensor and bed mesh compensation software.

The team has been working hard to perfect mesh compensation to ensure it’s ready for release. An eddy current scanner was selected for its high precision, performance, and rapid data collection. Despite the clear benefits, the scanner’s reliability was a concern for users. Disconnections during a print would trigger an error and cause the print to fail, as the scanner is recognized as a main control unit (MCU), and Klipper naturally shuts down when an MCU is unresponsive or disconnected. During initial beta testing, about 33% of machines experienced these disconnections, which was consistent with in-house testing.

The software team conducted thorough investigations with the manufacturer and explored how Klipper handles MCUs – ultimately deciding to implement a feature in Klipper to declare and allow non-critical MCUs. This change prevents print stoppage if a disconnection occurs, as the scanner is not essential during an ongoing print. After this adjustment there were significant improvements in testing. This enhancement ensures that mesh compensation is not only accurate but also reliable, laying the groundwork for its upcoming release.

Klipper Stack V0.5.0

The release of Klipper stack V0.5.0 was delayed in 2024 due to the move but is now available to download from re:3D’s Github repository. This update introduces fine-tuning for machine parameters, new features, and fixes for existing issues. Currently, the process involves building the operating system, configuring dependencies, and settings, and then creating a copy of the entire OS, which is compressed into an image file for SD card deployment. This method is slow and cumbersome, requiring a near-perfect system state before imaging.

While the Klipper configurations are stored in a GitHub repository, allowing remote updates for machine configurations, system component updates are not possible remotely. V0.5.0 extends the ability to modify certain components, but system-wide modifications remain out of reach. The best approach may be a shift to variant creation of the distribution that grants total control over the OS and its dependencies. This would enable nightly builds and allow every system component to be modified remotely.

Improved Print Recovery

There has also been a lot of work improving the print recovery workflow. The current recovery tool, while useful, requires manual efforts and often results in noticeable layer artifacts. The new method, which is native to the Klipper stack, is fully autonomous and more accurate. It monitors a print in progress, constantly recording the current position of the G-code file by byte. If a stoppage occurs due to an error or other causes, the file is automatically copied and parsed to the exact last G-code line, while preserving the start G-code. This ensures that the print resumes exactly where it left off without creating a layer artifact. This new print recovery feature will significantly reduce the need for manual intervention, making the printing process smoother and more reliable.

The only caveat is that this method doesn’t cover power interruptions. To recover from a power outage, an uninterruptible power supply (UPS) would be required to send a signal to the printer’s Raspberry Pi, triggering a script when a power failure is detected.

Introducing Helm: A New Web Application for Printer Fleet Management

Managing multiple printers in the factory was becoming a challenge, so re:3D’s lead software engineer developed a simple script to query devices on the network and find connected printers. This script has now evolved into a full-fledged web application for printer fleet management, aptly named Helm. Helm offers many features to enhance monitoring and synchronous communication across the network.

Helm is similar to Mainsail in that it uses the Moonraker API to communicate with Klipper, but it automatically detects Klipper printers on the network and displays detailed, dynamic information on a single page (Figure 12).

Figure 12: Helm dashboard.

Here are some of Helm’s key features:

  • Server hosted on the local network for multiple clients
  • Automatic network scanning to connect to printers
  • Status monitoring
  • Display of hostname, IP address, and firmware version
  • Dynamic monitoring of status, state messages, temperatures, and command responses
  • Multi-printer selection for command execution
  • File upload/deletion
  • Start/stop prints
  • List G-code files on a particular machine
  • List commands
  • Send G-code commands
  • Set temperatures
  • Cooldown heaters
  • Firmware restart
  • Emergency stop

Helm is still a work in progress, but it’s an open-source project and open to contributions. You can try the application yourself, report problems, contribute, or follow progress here: Helm on GitHub. Helm is designed to simplify printer management and will continue to evolve with input from the community, ensuring it meets the needs of users managing multiple printers.

R&D Programs

re:3D is proud to have a robust R&D program, sponsored in part through industry and government awards and contracts. Each of these could consume its own blog post (and perhaps someday will, disclosure rules permitting). For now, here’s a brief summary of recent and ongoing programs re:3D is engaged with through the Department of Defense, NASA, the Department of Energy and the National Science Foundation.

One of the visions of re:3D’s founders was to provide a means of production to people in need, who could fabricate parts from local and salvaged materials. The Gigalab is a huge step towards fulfilling that vision. Within a modified 20-ft shipping container, the Gigalab Mobile Recycling Facility can contain all of the equipment required to break down waste plastics to use as feedstock for printing functional items with a GigabotX printer. Multiple variants of Gigalabs have now been fielded at four locations: the Engine-4 coworking lab in Bayamón, Puerto Rico; an Army Corp of Engineers facility at Fort Leonard Wood, Missouri; Cannon Air Force Base in New Mexico; the Austin Habitat for Humanity ReStore location in Austin, Texas (Figure 13).

Figure 13: Gigalab at Engine-4 in Bayamón, PR (a-b); Fort Leonard Wood Gigalabs (c); Gigalabs with wind turbine power at Cannon Air Force Base (d).

You can learn more about re:3D’s Gigalab at Engine-4 in Puerto Rico in an earlier re:3D blog post here: October 2023. Last year’s highlights from the US Army and US Air Force Gigalab projects included logistics challenges, travel to Los Angeles to install a custom energy-management system and fabricating (and flying) small drones printed from recycled drones (Figure 14).

Figure 14: Installation of a wind turbine on a USAF Gigalab at re:3D’s Carmine, Texas interim test site (a); installation of a custom energy management system for the US Army Gigalabs at Wenzlau Engineering in California (b); iterations of printed “drones from drones” at Cannon Air Force Base in New Mexico (c-d).

ReCreateIt (NSF)

ReCreateIt is a multinational collaboration led by re:3D to transform waste plastic into valuable products with 3D printing and community-led design. The Gigalab located at the Austin Habitat for Humanity ReStore is a part of this program, which is funded through the National Science Foundation’s Convergence Accelerator. In order to maximize the value of “trash-to-treasure” in converting waste thermoplastics collected at the ReStore into printed goods of value, re:3D now employs a polymer scientist dedicated to this project who will investigate and optimize the processing and printing parameters to best recycle plastics via material extrusion additive manufacturing (3D printing).

Recent success in 3D printing with recycled polypropylene (PP) is evidence of the benefit of having a polymer scientist on staff. PP is the second most widely produced plastic in the world, and is commonly used for consumer items, including storage bins, which are available in large numbers for recycling at the ReStore (Figure 15(left)). However, PP is commercially recycled at a rate of less than 5% – partly due to industrial processing and economic challenges. Additionally, as with all members of the polyolefin family of polymers, it is notoriously difficult to use as a feedstock in 3D printing, even in a neat or virgin state, let alone as recycled granulate. But the perseverance and dedication of the ReCreateIt team is paying off as evidenced by the printed vase in Figure 15(right), along with many other great successes.

Figure 15: Members of re:3D’s ReCreateIt team sorting plastics at the Austin Habitat for Humanity ReStore (a); decorative vase printed from polypropylene laundry baskets and storage totes (b).

Low-SWaP Waste-to-Print System (NASA)

Remember the Gigalab – a converted 20-ft shipping container with the equipment to granulate plastics and print objects of use? Now imagine a similar system the size of a dorm refrigerator that uses half the power of a common space heater and is designed to work in space. This is the objective of a research contract re:3D was awarded through NASA for the Artemis Gateway program. The GigabotX has been repackaged into a low size, weight, and power (SWaP) version and integrated with a custom granulator (Figure 16(left). The system is intended to recycle packing foams which are necessary to protect payloads during liftoff, but are largely unnecessary once in space – or on the lunar or Martian surface. These foams can then be recycled for repair parts, construction materials or other items which would otherwise need to be delivered separately (at significant cost). The system isn’t ready for flight testing yet, but interim hardware demonstrations have already been performed for NASA on-site at Kennedy Space Center in Florida.

Figure 16: Low-SWaP printer and granulator system (a); tetrahedral dowel connectors printed from shipping foam (b).

“Bigger, Better, Faster” FGF (US Army)

Building on the success of one of re:3D’s R&D contract with the US Army to demonstrate printing from waste in a Gigalab, sequential funding was secured to print bigger, better and faster – using a wider range of recycled materials as feedstock. This will still be a cartesian FGF printer built on an extrusion frame, but larger in footprint than re:3D’s TerabotX (Figure 17). The extrusions are larger and stiffer, and the design is more easily scalable in the length axis to accommodate future development goals. The bed will be stationary with better access from the front and back to aid print monitoring and removal. For motion control, stepper motors are being replaced with servo motors for improved speed and torque performance, and linear screws are replacing belt drives for translation. The standard ArchiMajor control board will still be used, but a custom breakout board has been designed in-house to provide servo motor control, and the Klipper GUI interface is getting an upgrade to better reflect the operation of an FGF printer.

Figure 17: FGF R&D printer lower frame for the US Army. Hardware Engineer for scale.

re:3D is very pleased to collaborate with Dr. David Kazmer and his team at the University of Massachusetts Lowell to design, fabricate and optimize a new extruder with a novel screw for this project. The extruder length won’t change much from the existing GBX design, but the screw’s diameter will double and provide a very significant increase in throughput. Additional support is coming from the University of Maine’s Advanced Structures and Composites Center (ASCC). They will be leading the effort to develop recycled biocompounds – that is, feedstock materials produced from recycled polymers and wood or paper waste. This is an exciting R&D project with many possibilities for cross-development into re:3D’s portfolio of standard printers and other collaborative opportunities.

Additively Manufactured Thermal Protection Systems (NASA)

When a spacecraft enters a planet’s atmosphere, friction generates extreme heat which can damage the craft and payload (human crew or otherwise). Thermal Protection Systems (TPS) are materials designed to insulate and dissipate that heat energy – often through charring and re-radiation. Under an R&D contract with NASA / Johnson Space Center, re:3D is developing a pilot manufacturing system to print TPS materials directly onto spacecraft heatshields and other structures. Dr. Brett Compton and Dr. Damiano Bacerella (University of Tennessee – Knoxville) are developing and testing a phenolic-based foam, which when cured at elevated temperatures forms a ceramic-like TPS structure (Figure 18(a)). re:3D, in turn, is designing and building a printer to deposit the foam onto a large, non-planar aluminum dish. This requires a 5-axis printer with advanced controls (Figure 18(b-c)). re:3D is collaborating with Siemens/CATCH on the industrial motion control system, and with Addiguru for deposition monitoring.

Besides the unique opportunity to work on #supercoolNASAstuff, this project is giving re:3D additional experience with new industrial control systems, 5-axis tool-path planning and printing thermoset materials. Thermosets differ from thermoplastics in that they start out in some fluid form and require heat to harden (rather than just melting and recooling, as do thermoplastics). This gained experience with thermosets will allow re:3D to provide new opportunities to work with customers on a wider range of material extrusion projects. The deposition monitoring system being spearheaded by Addiguru may also be modified for future inclusion in re:3D’s commercial products. Finally, this provided the R&D team a reason to purchase a large truck oven (Figure 18(d)) for curing the TPS foam after it is deposited onto the aluminum dish. It might also be for a dual-use on Pizza Fridays.

Figure 18: High-energy testing of TPS foam (a); AMTPS printer frame (b); ViscoTec deposition head on multi-axis mount (c); Blue-M truck oven (d).

Water Bottle Granulation (DOE)

Through a Cooperative Research and Development Agreement (CRADA) with Oak Ridge National Laboratory in Tennessee, re:3D is partnering with Oak Ridge’s Manufacturing Demonstration Facility (MDF) to develop a low-cost and accessible granulator that can break down water bottles into appropriate flake (Figure 19(left)), even if they are still full of water. Collaborators at ORNL/MDF are also investigating the best ways to separate the different polymer components of the granulated water bottles (Figure 19(center, right)) so they don’t have to be pre-processed to remove the lids, safety rings and labels – often done manually in small-scale operations. Phase II of the project was approved in 2024.

Figure 19: Plastics granulator with modified controls to safely process wet water bottles (a); separated water bottle flake: PET bottle portion (b) and PP/PE lid and label portion (c).

This was a long post. But there was a lot to cover from last year, and it’s been awhile since an engineering update was posted to the blog. Thanks for sticking with it, and stay tuned for more (frequent) updates.

As always… Happy Printing!

References

[1] 3DBenchy.com
[2] Al Nabhani, D.; Kassab, A.; Habbal, O.; Mohanty, P.; Ayoub, G.; Pannier, C. Benchmarking the Tensile Properties of Polylactic Acid (PLA) Recycled Through Fused Granule Fabrication Additive Manufacturing. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 14–16 August 2023. https://doi.org/10.26153/tsw/50919

Patrick Ferrell

Senior Engineer

GIGAPRIZE 2024 IS LIVE!

We Have a BIG Announcement!

Congratulations to our 2024 Gigaprize winner – OrthoAdditive Africa in Cape Town, South Africa! OrthoAdditive Africa’s mission is to overcome barriers to healthcare access for people living with disabilities through CAD and additive manufacturing technology. They propose to use the Gigabot 4 FFF 3D printer we will be sending them to prototype a range of seating, positioning, and mobility devices currently in development with their collaborators Shonaquip.

You can learn more about their plans for Gigabot in their video:

A huge shoutout goes out to all of the outstanding applicants for this year’s prize who are doing amazing things in their communities here in the US and abroad – Asmbly MakerspaceBlack Sheep Food Initiativethe Citizens Archive of PakistanEveryShelterSOC Films, and the Welman Project! Entry videos for all of this year’s amazing applicants can be viewed on a dedicated playlist on our YouTube channel here.

Thank you to our amazing panel of judges for taking time out of their busy schedules to evaluate the application videos and determine the winner of this year’s Gigaprize. Please make sure to sign up for our newsletter on our website to find out when the next Gigaprize is taking place! 

THE FINALISTS

WHAT IS THE GIGAPRIZE?

The Gigaprize is a competition re:3D runs to support other amazing individuals and groups committed to building community, one layer at a time. For every hundred printers we sell, we donate one Gigabot large-format, industrial filament 3D printer to an individual or organization that will use it for a good cause.

Gigabot 4 3D Printer

WHO ARE OUR JUDGES?

An external team of impartial judges with a wide variety of experience and expertise will evaluate applications for the Gigaprize during the second half of December. Our stellar lineup this year includes:

Maria Arteaga

Maria Arteaga

Talent and Workforce Development Coordinator

Opportunity Austin
Berga, Gustavo

Gus Berga

Artist
Ellis, Luke

Luke Ellis

Account Executive

Indeed
Gallagher, Courtney

Courtney Gallagher

CEO

EarthViews
Laszlo, Joe

Joe Laszlo

Head of Industry Insight & Engagement

Shoptalk
Mayes, Jamie

Jamie Mayes

LIFT Consultant

UT Austin Honors Program
Morgan, Madelyn

Madelyn Morgan

Circular Economy Program Manager

City of Austin, TX
Ryan Murray

Ryan Murray

Management Consultant

McKinsey & Company
Riley, David

David Riley

Lead Instructor, Digital Modeling & Fabrication

IYRS
Zane Ross

Zane Ross

Engagement Manager

America Makes/NCDMM
Szmara, Pamela

Pamela Szmara

Founder and CEO

Pamton 3D

THE GIGAPRIZE 2023 WINNER

Our 2023 Gigaprize winner was Brookwood in Georgetown! Their vision of empowering adults with special needs with the Gigabot 4 3D printer to create art and change lives earned them this recognition.

3D printer with the Gigaprize instructions on how to apply

Michael pregill

Blog Post Author

The Force is Strong with This Maker: Mike Ogrinz & His Life-Size 3D Printed Grogu

Mike Ogrinz is a maker through and through, deeply embedded in the re:3D community since backing the original Gigabot on Kickstarter in 2013. He originally purchased the Gigabot to 3D print the parts for his life-size replica of Robby the Robot. Over the years, Mike upgraded his Gigabot 2 to have a heated bed and dual-extruder capabilities. This has given Mike the ability to use the Gigabot for numerous projects, including making re:3D a life-size 3D printed Grogu (Baby Yoda) in exchange for our Series II All-Metal Body Extruder. You can read Mike’s blog post about how Grogu was created below, originally posted on his website, ogrinz.com.

I’ve had my Gigabot 3D printer for almost a decade now (wow) and every now and then the company behind it (re3D) have asked “Would you print something out for our in-house museum?” They’ve even offered to pay for the filament, shipping, etc. At one point, I *almost* sent them one of the spare heads from my Robby the Robot project, but the thought of all that sanding, priming, and painting scared me off.

Then a few months ago Jennifer from re3D reached out again. She asked if I’d be interested in making something, and even offered me some credit in their store. Well, I did have my eye on a set up fully-machined dual aluminum extruders as an upgrade for my Gigabot…. So I asked, “What would I have to make you in exchange for those parts?”

Jennifer almost immediately answered “Baby Yoda!” and the deal was struck. I figured with the filament cost probably coming in around $100, I was getting the better end of the deal. But of course, there was a lot of finish work required. And since Grogu has so many organic surfaces and details, it had to all be done by hand. I had to completely finish the replica too, which meant learning how to use an airbrush (well, it meant buying and airbrush and then learning how to use it). But I am extremely happy with how it came out. Now if I only could find the time to install those metal extruder mechanisms…

The 3D printed Grogu took 134 hours to print and used three rolls of PLA Silk filament.

The original Grogu file came from MarVin_Miniatures on Thingiverse. You can also follow them on Facebook, @MarVinMinis.

To learn more about Mike’s other projects click here. You can also check out Mike’s YouTube Channel, Ogrinz Labs, where he posts educational and informational videos on his awesome builds.

Jennifer Dennington

Blog Post Author

Reimagining Themed Experience Design with Large-Scale 3D Printing: UCF’s Domain Bizarre Project

In the highly competitive realm of themed experience design, standing out requires not only innovative concepts but also the ability to present those concepts in a compelling and tangible way. This was the challenge faced by our project team at the University of Central Florida’s (UCF) Themed Experience Master’s Program. Our project, “Domain Bizarre,” aimed to revolutionize the theme park experience with a queueless land design. Key to our success was the utilization of a large-scale 3D printed massing model, generously provided by re:3D Inc.

The Power of Large-Scale 3D Printing

In themed entertainment design, the devil is in the details. Traditional desktop 3D printers, while useful, often produce models that are too small to effectively convey the full scope and intricacy of a design. This is where re:3D Inc.’s large-scale 3D printing capabilities came into play, allowing us to create a 2ft x 2ft massing model of Domain Bizarre.

Why Printing BIG Matters

The ability to print a large model was crucial for several reasons:

  1. Detailed Realism: Larger models capture finer details and provide a more realistic representation of our design. This level of detail is essential for themed entertainment, where every element contributes to the overall narrative and guest experience.

  2. Comprehensive Visualization: A substantial model offers a more comprehensive view of the project, helping our team and the judges better understand spatial relationships, proportions, and the overall layout of Domain Bizarre.

  3. Impactful Presentations: For our presentation, the large-scale model made a significant impact. It allowed the judges to truly grasp the scale and complexity of our design, enhancing their understanding and engagement.

Domain Bizarre: Concept to Reality

Domain Bizarre is a queueless land designed to be integrated into an existing theme park. Our goal was to create a seamless, immersive environment where guests could explore at their own pace without the constraints of traditional queues. Here’s how the large-scale 3D printed model facilitated this vision:

  1. Design Breakdown: The 2ft x 2ft model allowed us to break down different areas of Domain Bizarre, illustrating how story beats unfolded across the land. We could clearly show where interactive elements, seating areas, and food stalls were ideally located.

  2. Interactive Elements: By printing large, we could place and adjust interactive elements within the model, ensuring they fit seamlessly into the environment and contributed to the overall guest experience.

  3. Optimized Layout: The detailed model helped us optimize the placement of various features, ensuring that every element—from food stalls to seating areas—was strategically placed to enhance the guest experience.

The Role of re:3D Inc.

While UCF’s Themed Experience Master’s Program provided the platform for our project, it was re:3D Inc. that made our vision a reality. Their Gigabot 3D printer allowed us to create a detailed, large-scale massing model that was pivotal to our presentation’s success. The ability to “print HUGE” provided a level of detail and realism that desktop models simply cannot achieve.

Presentation Impact

The impact of our large-scale model on the presentation was profound. Judges were able to see our world in a tangible form, allowing them to fully appreciate the intricacies and thoughtfulness of our design. The model’s size and detail made it easier for them to visualize how Domain Bizarre would function in real life, enhancing the overall effect of our presentation.

Conclusion

The successful presentation of Domain Bizarre demonstrates the critical role that large-scale 3D printing can play in themed experience design. By collaborating with re:3D Inc., our project team was able to create a compelling and detailed massing model that brought our vision to life. This experience underscores the importance of innovative presentation tools in the field of themed entertainment, paving the way for future projects to push the boundaries of creativity and design.

For our team, the journey of Domain Bizarre was not just about presenting a project; it was about pioneering new methods of visual storytelling and spatial design. With the help of re:3D Inc., we showcased how large-scale 3D printing can transform abstract concepts into tangible realities, setting a new standard for themed experience presentations.

Blog Post Author

TerabotX 2 3D Printers

TerabotX 2

Three Zone Independently
Controlled Barrel Heaters
5/8" Extruder Screw with a
16:1 L/D Ratio and a
0.4,
0.8, 1.75 or 3mm nozzle
9 Point Bed Leveling
NEMA 17 & 23
Stepper Motors
0.5" Aluminum Heated
Bed with PRINTinZ
Leveling Caster Wheels
Full Color 10"
LCD Touchscreen
with Mainsail for
Klipper
interface
Linear Rails on All Axis
7.8 kg Hopper Capable
of 24h
of Printing
Between Refills
32bit ArchiMajor
Control Board

Fulfill your large-format FGF 3D printing needs with TerabotX 2, expanding the size of your build volume to 879 x 908 x 830mm. This direct-drive pellet extrusion based 3D Printer can print from virgin or recycled pellets, flake, or regrind – and bring us even closer to the dream of a circular economy.

A ⅝” extruder screw with a 16:1 L/D ratio powered by a NEMA 23 motor enables 3D printing with 3-5mm plastic granules with melting temperatures below 270ºC. With a larger 0.4, 0.8, 1.75 or 3mm nozzle, TerabotX 2 3D printer reduces the dependence on printing with filament while supporting plastic granule mixing, increasing printing speed and cost savings.

Your open-source industrial 3D printer is powered by a 32bit Ultimachine ArchiMajor control board and Klipper firmware run on a Raspberry Pi. Access TerabotX 2 controls via the Mainsail interface on either the 10” LCD touchscreen or a desktop or mobile web browser.

Hand-crafted in Texas by team re:3D to highly precise standards, your TerabotX 2 3D printer is modular, upgradable and backed by Lifetime Customer Support.

Printing

Technology

FGF

Build Volume

879 x 908 x 830 mm

Extruder

Steel 5/8" extruder screw with a 16:1 L/D ratio

Materials

Supports thermoplastics melting below 270 ºC

Granule Size

Supports 3 - 5 mm plastic granules & pellets

Layer Resolution

0.32 - 2.25 mm

Printing Speed

up to 30 mm/sec

Nozzle Diameter

0.4, 0.8, 1.75 or 3 mm

Mechanical

Design

Modular & upgradable construction

Construction

Robust aluminum cartesian frame

Build Plate

Cast aluminum blanchard ground flat 0.5” thick build plate

Stepper Motor

NEMA 17 & 23

Touchscreen

Bot Control

Full color 10" LCD Touchscreen with Mainsail for Klipper interface

Connectivity

Optional network connecting for local monitoring & control

Software

File Transfer Method

USB or Wifi

Open Source

Open source Klipper software stack

Upload File Type

G-code (.gcode) upload file type

Printing Workflow

Includes Simplify3D setting profiles

Electrical

Power

110V 60Hz 20A or
220V 50Hz 10A

Extruder Temperature

Up to 270ºC

Build Surface Temperature

Up to 115ºC

Explore Other FGF 3D Printing Solutions

GigabotX 2 XLT Granular 3D Printer

GigabotX 2 XLT 3D Printer

GigabotX 2 XLT Three Zone Independently Controlled Barrel Heaters 5/8″ Extruder Screw with a16:1 L/D Ratio and a0.4,0.8, 1.75 or
GigabotX 2 Granular 3D Printer

GigabotX 2 3D Printer

GigabotX 2 Three Zone Independently Controlled Barrel Heaters 5/8″ Extruder Screw with a16:1 L/D Ratio and a0.4,0.8, 1.75 or 3mm

Have any questions?

Revolutionizing Chair Manufacturing: A Journey with Rhodes and re:3D’s Gigabot

3 office chairs

Have you ever considered how the chair you are sitting on right now was made? It’s a question that often goes overlooked in our daily lives, yet the answer reveals a world of innovation and creativity shaping the furniture industry. One of the notable players in this space is Brazilian manufacturer, Rhodes. Founded in 1964, Rhodes has been at the forefront of chair component manufacturing, producing around 5 million components annually for various seating solutions, from office chairs to public seating in airports and stadiums.

3 office chairs

Rhodes plays a vital role in providing essential elements for operative chair lines. Key products include bases, columns, and mechanisms, which maintain Rhode’s strong presence as a component supplier. Despite market challenges, especially during Brazil’s economic crisis in 2013-2014, Rhodes has excelled. During the COVID-19 Pandemic, Rhodes expanded into the ready-made chair market, adapting to the growing need for home offices. Currently, Rhodes is a major manufacturer of chairs and chair components in Brazil and exports its products to other Latin American countries, the United States, and some parts of Europe.

Rhodes’ integration of 3D printing played a crucial role in streamlining their manufacturing process and achieving global success. Initially, Rhodes outsourced their 3D printing needs. They would create a computer-aided design (CAD) file for their chair component prototypes, send it to a partner company in Italy, and wait for the 3D printed component to come back. The cost and time constraints prompted Rhodes to explore other alternatives. After a Google search led Rhodes to re:3D, the size and affordability of re:3D’s Gigabot cemented their purchase as Rhodes first in-house 3D printer for prototyping and design iterations. A decade later, Rhodes’ workhorse Gigabot 2 is still going strong, being used to 3D prototype every plastic component of their furniture lines. 

"The Gigabot has paid for itself many times over. Having the capability in-house eliminates development constraints. For instance, I've even created a chair base prototype where each of the five legs was distinct, allowing me to assess the best aesthetic for the product within a single piece."

Gigabot’s robustness and versatility has allowed Rhodes to seamlessly integrate 3D printing into their development processes. From mitigating design flaws to producing quick 3D prototypes for assessment, Gigabot has been a reliable companion, functioning almost continuously for a decade. But it wasn’t always that easy. It took Júlio a full year of experimenting and learning before getting quality prints from Gigabot, since he had no prior 3D printing experience when Rhodes decided to test the technology. Julio had to determine which material to print with and find a reliable national supplier. He ended up choosing ABS because of its durability, which was key to testing the prototypes before finalizing their design. Júlio built an enclosure for the machine to overcome temperature differences during different seasons and ensure ABS would print year-round. He has also tested every type of glue on the market, including hairspray, to make the prints adhere to the print bed, as re:3D’s original Gigabot 2 did not come with PrintinZ.

"I need to have a prototype to ensure assembly and reliability, especially for the design of the piece. [Gigabot] allowed me to try new fastening technologies, something that wasn't possible some time ago, as I required a mold to create the geometry I needed."

Júlio started small, prototyping components of chairs such as caster bases, columns, mechanisms, seats, and backrests. Rhodes also began to use Gigabot to print replacement parts for machines in their factory and has been contracted by their vendors to CAD other non-chair-related products. Because of their success with Gigabot 2, Rhodes purchased a Gigabot 4, which will be an upgrade from their current, single-extruder workhorse. Júlio anticipates enhanced ease of use and agility, allowing for increased prototyping and quicker project timelines. Júlio believes that 3D printing’s strength and effectiveness is well-established and expects the technology to continue influencing the furniture industry.

"[Gigabot] allows you to design things you wouldn't if you didn't have it; it enables you to take more risks, to take more shots. It gives you more bullets to hit the target."

The integration of Gigabot at Rhodes exemplifies how innovative technologies can revolutionize traditional industries. Júlio’s insights showcase the profound impact of 3D printing on Rhodes’ development processes, fostering creativity, and enabling the exploration of new design possibilities. Looking towards the future, Rhodes is poised to take its manufacturing capabilities to new heights with the upcoming addition of the Gigabot 4. With its dual-extrusion print head, this advanced 3D printer will enable Rhodes to produce larger, more intricate 3D prototypes, pushing the boundaries of design creation even further. Moreover, by doubling their printing capacity with two Gigabots, Rhodes aims to accelerate their prototyping process, allowing for quicker iteration and refinement of their chair designs. As Rhodes continues to leverage Gigabot’s capabilities, it exemplifies a story of adaptation and innovation in the furniture manufacturing industry that is not slowing down.

Revolucionando a Fabricação de Cadeiras: Uma Jornada com a Rhodes e a Gigabot da re:3D

Você já parou para pensar em como a cadeira em que você está sentado agora foi feita? É uma pergunta que muitas vezes passa despercebida em nossas vidas diárias, mas a resposta revela um mundo de inovação e criatividade que está moldando a indústria de móveis. Um dos nomes mais fortes  nesse espaço é a fabricante brasileira Rhodes. Fundada em 1964, a Rhodes tem estado na vanguarda da fabricação de componentes para cadeiras, produzindo cerca de 5 milhões de componentes anualmente para várias soluções de assentos, desde cadeiras de escritório até assentos públicos em aeroportos e estádios.

3 office chairs

A Rhodes desempenha um papel vital no fornecimento de elementos essenciais para linhas de cadeiras operativas. Os principais produtos incluem bases, colunas e mecanismos, o que mantêm a forte presença da Rhodes como fornecedora de componentes. Apesar dos desafios do mercado, especialmente durante a crise econômica do Brasil em 2013-2014, a Rhodes se destacou. Durante a pandemia de COVID-19, a empresa expandiu seu portfólio para o mercado de cadeiras prontas, adaptando-se à crescente necessidade do home office. Atualmente, a Rhodes é uma das principais fabricantes de cadeiras e componentes para cadeiras no Brasil, além de exportar seus produtos para outros países da América Latina, Estados Unidos e algumas partes da Europa.

A integração da impressão 3D pela Rhodes desempenhou um papel crucial na otimização do seu processo de fabricação e no alcance do sucesso global. Inicialmente, a Rhodes terceirizava suas necessidades de impressão 3D. Eles criavam um arquivo de design assistido por computador (CAD) para os protótipos de componentes das cadeiras, enviavam para uma empresa parceira na Itália e aguardavam o retorno do componente impresso em 3D. Os custos e as restrições de tempo levaram a Rhodes a explorar outras alternativas. Após uma pesquisa no Google levar a Rhodes à re:3D, o tamanho e a acessibilidade do Gigabot da re:3D consolidaram a compra como a primeira impressora 3D interna da Rhodes para prototipagem e iterações de design. Uma década depois, a robusta Gigabot 2 da Rhodes ainda está em plena atividade, sendo usada para prototipar todos os componentes plásticos de suas linhas de móveis. 

"A Gigabot se pagou muitas vezes. Ter essa capacidade internamente elimina as limitações de desenvolvimento. Por exemplo, já criei um protótipo de base de cadeira onde cada uma das cinco patas eram diferentes, permitindo-me avaliar a melhor estética para o produto em uma única peça."

A robustez e a versatilidade do Gigabot permitiram à Rhodes integrar perfeitamente a impressão 3D em seus processos de desenvolvimento. Desde mitigar falhas de design até produzir protótipos rápidos para avaliação, a Gigabot tem sido uma companheira confiável, funcionando quase que continuamente por uma década. Mas nem sempre foi tão fácil. Júlio levou um ano inteiro de experimentação e aprendizado antes de conseguir impressões de qualidade com a Gigabot, já que ele não tinha experiência prévia com impressão 3D quando a Rhodes decidiu testar a tecnologia. Júlio teve que determinar qual material usar para impressão e encontrar um fornecedor nacional confiável. Ele acabou escolhendo ABS por causa de sua durabilidade, o que foi crucial para testar os protótipos antes de finalizar o design. Júlio construiu uma caixa de proteção para a máquina para superar as diferenças de temperatura durante as diferentes estações, garantindo que o ABS fosse impresso durante todo o ano. Ele também testou todos os tipos de cola no mercado, incluindo spray de cabelo, para fazer as impressões aderirem à mesa de impressão, já que o Gigabot 2 original da re:3D não vinha com a tecnologia PrintinZ.

"Preciso ter um protótipo para garantir a montagem e a confiabilidade, especialmente para o design da peça. [A Gigabot] me permitiu experimentar novas tecnologias de fixação, algo que não era possível há algum tempo, pois eu precisava de um molde para criar a geometria necessária."

Júlio começou pequeno, prototipando componentes de cadeiras, como bases de rodízios, colunas, mecanismos, assentos e encostos. A Rhodes também começou a usar o Gigabot para imprimir peças de reposição para máquinas em sua fábrica e foi contratada por seus fornecedores para criar em CAD outros produtos não relacionados a cadeiras. Devido ao sucesso da Gigabot 2, a Rhodes comprou uma Gigabot 4, que será uma atualização em relação ao seu robusto equipamento atual de extrusora única. Júlio prevê maior facilidade de uso e agilidade, permitindo mãos projetos de prototipagem e prazos mais curtos. Júlio acredita que a força e a eficácia da impressão 3D estão bem estabelecidas e espera que a tecnologia continue influenciando a indústria de móveis.

"[A Gigabot] permite que você projete coisas que não projetaria se não a tivesse; permite que você corra mais riscos, faça mais tentativas. Ele te dá mais munição para acertar o alvo."

A integração da Gigabot na Rhodes exemplifica como tecnologias inovadoras podem revolucionar indústrias tradicionais. As percepções de Júlio mostram o profundo impacto da impressão 3D nos processos de desenvolvimento da Rhodes, promovendo a criatividade e possibilitando a exploração de novas possibilidades de design. Olhando para o futuro, a Rhodes está pronta para levar suas capacidades de fabricação a novos patamares com a próxima adição da Gigabot 4. Com sua cabeça de impressão de dupla extrusão, esta avançada impressora 3D permitirá que a Rhodes produza protótipos maiores e mais intrincados, expandindo ainda mais os limites da criação de design. Além disso, ao dobrar sua capacidade de impressão com duas Gigabots, a Rhodes visa acelerar seu processo de prototipagem, permitindo uma iteração e refinamento mais rápidos dos designs de suas cadeiras. À medida que a Rhodes continua a aproveitar as capacidades da Gigabot, a empresa reforça uma história de adaptação e inovação na indústria de fabricação de móveis que não está desacelerando.

Jennifer Dennington

Blog Post Author

Engineering Update – April 2024

It’s been a while since we’ve shared the progress being made by re:3D’s engineering team – June 2023, to be precise. But with the move of our headquarters from Houston to Austin (Texas) underway, it seems like a good time to take stock of where we are and where we’re going in the figurative sense as well.

The Gigabot FFF (Filament) Platform

Filament grinding diagram

re:3D took an intense look at reports of “filament grinding” submitted by our Gigabot user community, taking input from all the spheres within our company. It turns out that “filament grinding” means different things to different people, so our first step was to agree on a common lexicon and definition. We landed on a concise problem statement: “Customers experience poor extrusion performance due to the extruder gear removing material from the filament, “ which captures multiple causes and failure modes or symptoms. The engineering team evaluated, modeled and tested printer components all along the filament path – beginning at the spindle holding the filament spool down to the exit of the extruder nozzle. While recognizing that every user can encounter unique challenges and edge cases, this exercise ranked potential root causes and recommended optimizations in printer slicing parameters and specific improvements in the extruder manufacturing process. We expect these internal improvements and updated slicer profiles to improve overall reliability and print quality.

During check-ins with our customers, we also receive a lot of interest in “automatic bed leveling” – another phrase that can have multiple meanings. We have incorporated an inductive sensor into the Gigabot’s extruder assembly and integrated the necessary software to allow the sensor to quickly map variations in the print bed surface and compensate the z-axis in real time to maintain a uniform nozzle-to-bed distance. This “bed mesh compensation” approach can yield exceptional first-layer results, even on a warped or non-trammed print bed. Our software team is working with the sensor manufacturer to improve the interface and provide a quality user-experience within the Klipper environment. After we finish mesh compensation development on our R&D and internal production printers, we’ll invite the user community to apply to beta test this new feature.

Our user community has also expressed a desire for a 1.75mm diameter filament option for re:3D’s Gigabot printers (where our extruders are designed for 2.85mm diameter filament.) In response, we have designed and are testing a conversion assembly to accommodate the smaller filament. The design has been tested for over 300 hours using a variety of filament materials – including flexible filament. It will soon be released as a kit which can be installed by users in the field.

The GigabotX FGF Platform

Crammer on top of a concrete surface

Specific to re:3D’s FGF platforms, the engineering team has focused on improving the performance and reliability of the extruder assembly. The standard ⅝” compression screw has remained unchanged, but the active feeding mechanism (i.e., the ‘crammer’) is getting a full overhaul. Feedstock with poor flowability such as coarse or lightweight plastic regrind and some TPU/TPE resin pellets can have difficulty flowing from the hopper to the extruder via gravity. The crammer provides an auxiliary auger to force these materials into the extruder body. The new design allows for higher and more uniform throughput, and increases reliability by using a stainless steel auger and machined components. Photos and design details, as well as a link to apply to be a beta-tester, are posted here on our User Forum.

In conjunction with the new crammer design, we have been testing an “autoloading” system to supply feedstock from a floor-mounted hopper rather than our normal top-mounted hopper. This system uses compressed air to drive an eductor which pulls and pushes the feedstock into the printer’s extruder via flexible tubing. A detection unit is mounted at the extruder which detects when the feedstock needs replenishing and triggers the compressed air to transport additional flake or pellets. The autoloader is currently being tested on a TerabotX which will be delivered in one of our Gigalab projects. It can operate as a stand-alone system or interface with the Archimajor control board and Klipper firmware to automatically pause printing if a feedstock delivery error is detected.

Coupler spinning

Other efforts underway include designing a more robust coupling mechanism between the extruder motor and the extrusion screw, installing a fourth heating zone to better control the nozzle/die temperature, and a deep-dive investigation into part-cooling for the GigabotX.

Software/Firmware

We are pleased to announce the upcoming release of Klipper Stack v0.5.0. This update represents a significant commitment to enhancing backend operations and ensuring our technology aligns with the latest developments within the Klipper community. Our focus on these upgrades positions us well for the introduction of innovative features in the future.

In pursuit of refining the user experience, we have streamlined the machinery setup process, enabling more rapid and efficient configurations. Enhancements include the introduction of prompt menus for various commands and adjustments to the location and visibility of the emergency stop button to reduce the risk of accidental activation. Furthermore, we have addressed and fixed specific issues such as the omission of certain characters and the disappearance of the virtual keyboard on touch-screen devices after each keystroke, ensuring a smoother and more reliable interaction.

This version also introduces a suite of new features and configuration adjustments. Highlights include the introduction of the ‘exclude objects’ module, which offers the flexibility to remove specific models from multi-model prints directly from the gcode mid-print. The ‘gcode arcs’ module expands movement options beyond the basic G1 move, incorporating G2 and G3 moves for enhanced precision. Furthermore, we have eliminated the homing sequence prior to resuming prints, addressing the issue of potential layer shifts on models.

These enhancements and fixes are part of our ongoing commitment to providing a robust and user-friendly platform, setting a solid foundation for future developments. The update is scheduled to release within a month.

Internal Processes

Internally, the engineering team is implementing processes reflecting re:3D’s ethos of being responsive and transparent to our community. Our engineering change and design processes are maturing to better engage internal and external stakeholders from the beginning of problem identification and requirements definition through operational release and ongoing support. These changes will help focus our resources on those efforts which will have the greatest impact on customer success and map the work against product roadmaps which have been developed to guide the engineering team over the next 12-18 months and beyond. And as an open-source hardware company and proponents of open science, we will be increasing our efforts to share as much of our learnings with the additive community as possible. This includes making our material testing protocols more robust and aligned with industry best practices and hosting an international, monthly FGF Users Group virtual meetup open to anyone interested in printing with pellets or flake.

And More…

Other activities have included improving the printers’ electrical systems and enclosure design. The team also continues to optimize printer software profiles and investigate additional slicing programs available for filament and pellet printing. Finally, additional variants of re:3D’s Gigalab will be presently fielded for evaluations – demonstrating that it is possible to turn waste plastic into usable parts at the point of need through additive manufacturing.

Look for release schedules and more details on all of these engineering initiatives in the coming months. We’ll be sharing via our mailing list, through blog posts and on the re:3D Community Forum

Stay tuned, and Happy Printing!

Patrick Ferrell

Senior Engineer

re:3D’s HQ is Moving to Austin TX!

re:3D is proud to announce that we bought our own headquarters space in Austin. We will use the space to scale, grow our ability to experiment with Gigalabs in a large outdoor space, and expand our networks in Texas!

The new facility is located in East Austin, known for being a mecca that actively convenes creatives & organizations committed to social impact. This location also allows re:3D to scale locally with University of Texas and Austin Community College initiatives focused on additive manufacturing, while increasing our global presence.

We’re still working out the details, but welcome your feedback at info@re3d.org as we are committed to ensuring a seamless transition.

Below are some FAQs our team has assembled, and will be updated weekly based on your inputs.

You can witness the final move out logistics live on Wednesday May 29th from 10am-7pm. The Houston team would love to high five any visitors as we share memories and plans for the future! More information is located on our Eventbrite here. 

re:3D’s new headquarters is located at 1201 Old Bastrop Highway, Austin Texas 78742 (formally the High Sign Brewery). The building can be accessed just off of the frontage road near the 183 and 71 intersection, so if you are looking for something to do before your next flight from the Austin airport, we would love to see you! 

Our current Houston headquarters’ and Austin Office lease end May 31, 2024. For this reason we are trying to batch equipment and inventory moves each week to minimize disruptions to our operations. All headquarter operations will be established in Austin beginning June 1 2024.

re:3D has maintained a presence in parallel with Houston since 2013. We are indebted to the Clear Lake community for supporting our founding but are struggling to scale & maintain insurance for manufacturing operations in a hurricane vulnerable area. As Austin offers more opportunities for recruitment, reduced overhead, and active support from local organizations that support our social mission, we decided to move our operations, while still maintaining a footprint in Houston.

Both Charlotte, who is a Co-PI for our NSF Covergence grant, and Patrick who leads our Army Gigalabs grant as well as two NASA awards will remain in Houston. Where they will be working from is yet to be determined, and we welcome your suggestions!

While some of the Houston crew is moving to Austin (so far- Cheyena, Justin, Will, Mitchell, Jordan, and Annabelle), several teammates will be transitioning to their next adventure and welcome suggestions/introductions on where they should be applying!

Orders are being accepted, however there may be delays in for orders placed in May when we transition from Houston to Austin. For this reason, we recommend stocking up on parts prior to April 30th:) 

Tours in Houston and Austin can be arranged by emailing discover@re3d.org.

Email info@re3d.org and we will do our best to transparently reply within 24 hours! 

A Journey of 3D Printing Innovation & Collaboration with YLAI Fellows

re:3D was first introduced to the US Department of State’s Young Leaders of the Americas Initiative (YLAI) in 2017. YLAI’s vision is to create a vibrant network of entrepreneurs across the Western Hemisphere. A key way this is achieved is through a Fellowship Placement with a business in the United States for four weeks. The Fellowship Placement is an opportunity for YLAI Fellows to experience the U.S. work culture and connect with key players in their industry. The YLAI Fellowship offers hands-on experience in exchange for using their skills and network to contribute to U.S. businesses and organizations. The Fellowship not only provides business insight and network for the Fellows but also provides their placement companies with cross-cultural understanding. Businesses form long-term relationships with their Fellows, extending the Fellowship well past the initial four-week placement.

Since 2017, re:3D has hosted three YLAI Fellows, the most recent being Juliana Martinelli from Brasília, Brazil in May of 2023. Samantha Snabes, re:3D’s Co-Founder and Catalyst and Juliana met over video to ensure that re:3D would be a good match for her fellowship. Juliana’s company, InovaHouse3D, 3D prints with cement and has a mission to print affordable houses in Brazil. Even though re:3D prints with plastic, we also have a social responsibility aspect to our work and admire InovaHouse3D’s goals!

Juliana worked on three different projects during her Fellowship. The largest project she undertook was completing a customer outreach campaign to re:3D’s customers who spoke Spanish and Portuguese. Juliana individually contacted forty-four customers in Central and South America. She successfully heard back from twenty-five customers via email and set up in-depth phone calls with them. During these conversations, Juliana learned what each customer used their Gigabot for and the current state of their Gigabot. Juliana provided the customers with re:3D resources and connected them with other members of the re:3D team. re:3D values the relationships with our customers and the outreach Juliana did have a positive impact in connecting with customers we don’t normally get the chance to talk to. Additionally, this outreach campaign connected Juliana with more players in the Additive Manufacturing space in Latin America.

Because of Juliana’s background in Electrical Engineering, she was able to problem-solve grounding issues with Gigabot’s electrical box. This was incredibly helpful as re:3D was building up its engineering team. The final project Juliana worked on was a personal project. She wanted to pitch InoveHouse3D to a few American Investors to get their valuable feedback. Juliana was able to meet with two different Investors and strengthen her InovaHouse3D deck.

By the end of Juliana’s Fellowship, a strong connection had formed between her and the re:3D team. YLAI had let re:3D, and the other businesses hosting fellows, know that there would be an opportunity for an Outbound Exchange program. In this exchange, someone from re:3D would go to Brazil for two weeks and work with Juliana’s company. Jennifer Dennington, re:3D’s Account Manager, applied for the Outbound Exchange Program and was awarded the grant! Jennifer left for the exchange in early January 2024 to amplify the future of Additive Manufacturing in Brazil.

From Left to Right: Jennifer Dennington, Juliana Martinelli, and Cheyena Davis

One of the main projects Juliana and Jennifer worked on was creating a storytelling blog post and video on re:3D’s customer Rhodes. Rhodes produces around 5 million components per year to assemble various models of office, school, and training chairs and public seats in airports, theaters, cinemas, and football stadiums. The blog article and video about how Rhodes uses its Gigabot will be published soon, so stay on the lookout for that.

Another project Jennifer and Juliana collaborated on was creating Additive Manufacturing lessons for Brazil. Jennifer’s background is in Special Education, she has a passion for making education fun and accessible to all people. Juliana teaches lessons to schoolchildren at the Planetário de Brasília (Brasília’s Planetarium) and has connections with public schools in Brasília. Before coming to Brazil, Jennifer knew she would share re:3D’s Introduction to Autodesk’s TinkerCAD lesson where Juliana would teach students how to make 3D models on their computers. However, after speaking with Juliana, Jennifer learned that many students do not have access to technology at school. Jennifer shifted gears and decided the first lesson she needed to create was an Introduction to 3D Printing lesson for students with limited to no knowledge of 3D printing and limited access to technology.

Jennifer modeled this lesson after the 5E Model of Instruction where students engage, explore, explain, elaborate, and evaluate 3D printing. She only included resources that Juliana had readily available to be used in the lesson. For example, because of Juliana’s partnership with the University of Brasília’s LAB, Juliana could bring 3D printed examples to show the students on top of having the Google Slides presentation. Click here to view and download the Introduction to 3D Printing Google Slides and here to view and download the full lesson plan.

Cement Lab at the University of Brasília

After Jennifer finished the Introduction to 3D Printing lesson, she went back to the Introduction to TinkerCAD lesson because it is a personal favorite of re:3Ds. TinkerCAD is a fantastic resource for teachers because you don’t have to have a 3D printer to do incredible and engaging lessons with your students. Teachers will have students they do not expect to interact with this lesson get really into it and become incredible 3D designers. Not only can students make 3D designs with TinkerCAD, but also they can create circuit boards and learn how to write code, all for free! TinkerCAD puts out challenges each month for students to compete in and educators post lessons they have created on TinkerCAD as well. Click here to view and download the Introduction to TinkerCAD Google Slides and here to view and download the full lesson plan and other additional resources. These lessons can be replicated and customized to fit different cultural contexts, educational settings, and learner demographics, thereby extending the reach and impact of 3D printing education. Jennifer hopes her lessons contribute to building a future workforce equipped with valuable science, technology, engineering, art, and math (STEAM) knowledge and competencies, thus promoting innovation and economic development in the long run.

Juliana took Jennifer on a tour of Programando o Futuro, an electronic waste (e-waste) recycling center with a broader mission of providing free technology education to the community. Their hands-on courses in robotics, 3D printing, computer repair, and marketing aim to equip people with tech skills, boasting a 55% job placement rate. With a commitment to inclusivity and sustainability, Programando o Futuro engages in extensive plastic recycling, collaborating with companies like HP to transform shredded plastic into new products or filament for their 3D printing lab. Programando o Futuro has repaired and donated over 3,000 computers and aims to recycle 1,100 tons of material this year. They want to partner with Juliana and the University of Brasília to get a spectrometer, which will help them rapidly and accurately identify the types of plastic that are donated. Additionally, Juliana wishes to use her partnership with Programando o Futuro to apply for re:3D’s Gigaprize program or apply for a grant to purchase a GigabotX 2 for their organizations.

A bonus meeting happened with Bryan Murphy, Associate Chief Engineer for the International Space Station (ISS), at Boeing to bring ISS Mini-Mimics to Brazil. The ISS MIMIC is a 1:100 scale articulating model of the International Space Station (ISS) that runs off of live data streaming from the real ISS. re:3D has had the joy of helping the ISS Mimic team by 3D printing solar arrays and participating in the 11 Freeman Library Community Builds of the ISS Mimic. If you would like to learn more about the ISS Mimic, check out this article written by re:3D. Jennifer and Juliana’s meeting with Bryan was successful because they secured three ISS Mini-Mimics for educational institutions in Brasília. The goal is that after Juliana completes the ISS Mini-Mimic with students, she will then apply for grants to fund an ISS Mimic community build at the Planetarium! She is also hoping to get support from Brazil’s only astronaut, Marcos Pontes, who is currently a Senator for São Paulo, in this endeavor. Bringing the ISS Mimic to Brazil has the potential to foster a lasting interest in space exploration and STEAM fields to all who encounter it.

A final fortuitous event happened at the end of Jennifer’s time in Brazil when she was able to meet with the 2024 Class of Brazilian YLAI Fellows. Jennifer was in Brasília at the same time as their orientation for YLAI. Juliana and Jennifer went and spoke about their YLAI experience with the Fellows for an hour and a half. The Fellows Jennifer met were awe-inspiring entrepreneurs. They have built up their business and are incredibly hard workers. When they come to the US they are paired with businesses and are partnered with anyone from the CEO of the company to an Account Manager. YLAI is not only about the Fellows coming in and learning from an American company but also about them sharing their knowledge and passion with the company they are paired with. If you are interested in hosting a YLAI Fellow, please email info@re3d.org, and Jennifer will put you in touch with the proper contacts. re:3D hopes to continue partnering with YLAI for as long as we are around.

Jennifer Dennington

Blog Post Author

2023 Gigaprize

Brookwood in Georgetown

And that is a wrap folks! Gigaprize 2023 is in the books, but our winner, Brookwood in Georgetown, is just getting started on their 3D printing journey! Brookwood in Georgetown is excited to use their Gigabot 4 to aid in producing ceramic molds and training for their vocational community that provides meaning work for adults with functional disabilities. Their final products the find their way onto the shelves at their award winning giftshop in Georgetown, TX.

GIGAPRIZE FINALISTS

We had many amazing applicants this year and it was an incredibly tight judging process, with our final 5 contestants (I Want That LegRe-InventaSew-PrintedCentro de Aprendizaje Educarte and Brookwood in Georgetown) being separated by less than a point. A huge thank you goes out to our wonderful judges – Khaalid McMillan, Sabine Berendse, Kameco de los Santos, Sonakshi Senthil, Josh Pridmore, Scott Austin Key, Jason Kessler, Sakshi Shah, Dr. Andrea Santos, Ama Fofie, Erik Hausmann, Lillian Ferrell & Lindsay Shwartz for bringing their expertise and industry experience to our judging process.

AMERICA MAKES

As a bonus, our Partner Organization AmericaMakes, will provide America Makes Education and Workforce development portfolio assets and training to the selected organization, meaning Brookwood in Georgetown will be onboarded into the AMNation! To learn more about America Makes, please visit their website at www.americamakes.us!

2023 re3D 3D Printer Gigaprize Winner BIG

A MESSAGE FROM BIG, 2023 GIGAPRIZE WINNER:

BiG has a vision of an inclusive, empowering world for adults with special needs. This marks a paradigm shift in the way that society typically views these individuals. We provide training and support for our Citizens to succeed in modified job tasks, allowing them to experience the dignity and satisfaction of accomplishing real work. Winning the Gigabot will allow us to dream and create in new and innovative ways for our Citizens to succeed. From making molds for our clay enterprise to creating adaptive tools for our Citizens to participate in our pie making kitchen—the sky is the limit! We are beyond grateful!
Debbie Guinn from BiG

I am so thankful to have been a part of this journey, and cannot wait to see what amazing things Brookwood in Georgetown will do with our Gigabot! I hope that the runner up will continue to follow re:3D and apply for our next Gigaprize!

Ryan Murray

Blog Post Author