3D Printing Sustainable Energy Solutions After Hurricane Maria

Hurricane Maria left nearly all people in Puerto Rico without power for months, some places never to have access again and others on a minimum of a five-year timeline before reconnecting to the grid. It also exposed an even deeper problem – the lack of renewable energy alternatives fueling the island with less than 1% of all power coming from renewable sources. A particularly troubling statistic considering Puerto Rico is a place that sees sun and wind all year round. A problem that manifested itself as people waited in 18-22 hour lines at gas stations for Diesel fuel for their generators, cars, and homes to reboot their energy essentials. And for those without generators, lack of power meant lack of refrigeration for necessities like insulin, a major contributor to the 3,000 casualties of Hurricane Maria. The only silver lining is that this tragedy has motivated new renewable energy legislation in Puerto Rico announced this week.

Our team in Puerto Rico decided that Gigabot and 3D printing could get started on making a dent on this problem and set out to 3D print a portable wind turbine with the gusto to charge a cellphone. re:3D hired local maker we met through the Parallel 18 community, a 3D printing enthusiast, founder of MadEra and former Ice Blast HVAC technician, Jean-Yves Auguste Chapiteau, with the knowledge and the know-how to design and 3D print a solution to this challenge.

An Initial Drawing of the 3D Printed Wind Turbine

After 5 months, this 3D printable wind turbine takes 200 hours to print with PLA and costs $200-300 including the electrical components, a cost that is 70-80% less than similar sized turbines on the market. Not to mention, it’s designed for easy installation, it doesn’t require maintenance, and its unique vertical axis design optimizes for capturing omnidirectional wind flow and unpredictable wind patterns common to Puerto Rico. It has the power the power up things such as a tablet, cell phone, and small devices.

This 3D printed wind turbine takes 200 hours to print with PLA and costs $200-300 including the electrical components, a cost that is 70-80% less than similar sized turbines on the market.

While still portable, Gigabot’s large format, human-scale 3D printing capabilities expanded this wind turbine’s boundaries of what was possible to be created and empowered the creation of a bigger, more powerful wind turbine.

Watch the wind turbine in action!

Compared to his past experience 3D printing with desktop printers, Jean shared it was an impactful difference to print with such bigger parameters which led to bigger opportunities to 3D print not just a bigger solution, but a better solution for a difficult problem. But as Jean says, “There’s no difficult job if you have the right tools”.

“There’s no difficult job if you have the right tools”.
Jean Auguste Chapiteau

Cat George

Blog Post Author

Medical Models For Disaster Response: Why We Designed and 3D Printed Flexible Vaginas

Nearly a year ago, Hurricane Maria devastated Puerto Rico with its Category 5  power. The entire electrical grid was destroyed, water systems were inoperable, 95% of cellular sites were broken and 400 miles of Puerto Rico’s 16,700 miles of roads were too damaged to drive on causing thousands of people and communities isolated from communications and disaster relief. 

While the island experienced many problems, many problem solvers stepped up to respond and local grassroots relief and recovery efforts formed immediately. One local organization, Colectiva Feminista en Construccion – a political organization advocating for women’s rights and protesting capitalistic and patriarchal oppression– opened up a fund and set up a center in an abandoned building in San Juan to distribute supplies to the community. But they didn’t stop there.“We don’t want to be just a band-aid,” shared one of the organizers, Maricarmen Rodriguez, “We want to help everyone and create a more inclusive society. Hurricane Maria cleared the makeup that was covering up problems that were already in Puerto Rico.” 

One of those problems surfaced while providing feminine hygiene products and realizing the need for medical models to teach about aspects of the vagina and how to use products like Diva Cups. More than that, Maricarmen wanted to find a way to talk about menstrual cups and sexual education that is often taboo in society. 

Could 3D printed vaginas be a tool for more grassroots sexual education?

When you look for your typical sex ed class medical models, they can cost hundreds per piece and the industry is monopolized by a small number of manufacturers. These models are made from unforgiving plastics that lack usability and plasticity to use to demonstrate with products like Diva Cups. Not to mention, in post-hurricane conditions, importing products like these would have been nearly impossible and taken months to arrive.

So Maricarmen reached out to re:3D in Puerto Rico and our teammate Alessandra set out to 3D print vaginas.

Right now, there are no open source vagina medical models so Alessandra started from scratch by creating a 2D picture by tracing from a medical book. She then used Rhino to create a 3D model.

The 3D printed vaginas – printed from flexible materials such as Ninjaflex and semi Flex making them more durable and less likely to break – provide more realistic and life-like medical models.

These 3D printed medical models have the ability to be just as realistic with attention to detail at a fraction of the cost: only $20-30 per print. The prints took about 3 hours on Gigabot – making body parts accessible nearly on demand.

This opens up new possibilities for schools, hospitals, and grassroots organizations to have access to affordable teaching tools – before a disaster and to aid in recovery and education after and beyond. 

Watch the 1-minute video of Alessandra explaining the 3D printed vaginas

re:3D had a #HurricaneStrong year in 2017 – our Houston team was hit by Harvey and our team in Puerto Rico withstood Hurricane Irma and Hurricane Maria. June 1st marks the official beginning of hurricane season in Puerto Rico and in this series, we are highlighting stories of impact and insight to encourage #3DPrintedPreparedness this year.

Cat George

Blog Post Author

And The Winner Is… Results of the Fast 3D Printed Furniture Challenge

As you may have seen, we launched a global 3D printing furniture contest this summer in pursuit of finding a 3D printed solution to quickly assemble furniture in preparation for this year’s hurricane season. Called the “Fast Furniture Challenge”, we opened up this problem to our global community in exchange for a $250 cash prize.

Applicants were judged on a set of criteria including print time, cost, materials restrictions, weight load, and ease of assembly. Winning prints had a print time of under 48 hours, cost less than $20 to print, and were easy to assemble and disassemble using only pre-cut wood from Home Depot for the final piece of furniture to hold at least 150 pounds.

Participants submitted .STL files and digital presentation boards and our team judged the designs based on each design’s creativity, presentation board, .STL quality, estimated print time and ability to print without supports. The top designs were then printed and put to the test – the final product was judged on the ability to withstand 150 pounds, how easy it was to assemble and the cost of the print.

We’re excited to announce our winner…drumroll, please…Sylvain Fages!  Sylvain’s design printed a set of joints (4 joints = 1 table) in 12.08 hours, using 1.07 lbs of PLA for a $20.21 material cost. The prints had 15% rectilinear infill and no supports were needed. Also, shout out to the runner-up: Daniel Alvarado from ORION.

Below you’ll see some snapshots and assembly footage from Sylvain’s winning design and the final product our teammate Alessandra put to the test.

Reviewing Design Boards & .STL files

Sylvain submitted two design presentation boards (you can also access the original Sylvain Designs PDF).

Sylvain's Design #1

Design #1 was done in such a way that the weight of the table is resting on the legs and not on the joint. That way, the strength of the table top should define the strength of the table; however, requires a small hole to “clip-in-place” the table top.

Sylvain's Design #2

Design #2 is almost the same as design #1 but without the hole for clipping the top in place. Design #2 was selected for printing as it does not require access to power tools that may not be available to people during emergencies. 

.STL file review & slicing revealed the model was watertight with no errors and can be printed without supports, due to its unique design.

Testing the Joints

After selecting the top designs, we put them to the test by 3D printing them and assembling tables using pre-cut wood from Home Depot to evaluate ease of assembly, their stability and ability to hold up to 150 pounds. Here’s footage from Sylvain’s printed designs:

3D Printed Table Joints Assembly Video: Ease of assembly was an important factor in choosing the winner, watch Alessandra assemble a table w/ Sylvain’s 3D printed furniture joints

Weight Test Video: We also tested that the table could hold up to 150 lbs.

Table Stability Video: Alessandra tested the level of the table’s stability.

Final Product Photos

Here are some snapshots of the joints in action after the table was assembled. Click to view bigger photos. 

Lessons + Insights

As you may have seen in our first post announcing this challenge, this Fast Furniture challenge was inspired by personal experiences our team endured during Hurricane Irma and Maria which we will continue to be sharing in our 3D printing recovery series. We ourselves went through rounds of trial and error to find a 3D printed solution to assemble furniture quickly – which was one of the biggest requests in the aftermath of Hurricane Maria. I caught up with our teammate Alessandra who shared some lessons from our experience and learnings from this challenge. Here are her key takeaways:

  • Joints with 3/8″ wall thickness are very resistant to breaking. Previously, we were using 1/8″-1/4″ wall thickness for joints and they weren’t as strong as Sylvain’s. That extra 1/8″ does the trick!
  • The configuration of the joints allows the table top to rest on the wooden legs and not the 3D printed furniture joints, which greatly reduces its probability of breaking.
  • No matter how thick the 3D printed part is, braces are needed for full stability. 
  •  
Using 3D printers to improve our world and help people - this is my vision of a 3D printer at its best!
Sylvain Fages

We asked Sylvain his motivation for 3D printing and entering this challenge, he shared, “Since I discovered 3D printing through a blog article about fixing a stroller back in 2014, I have always been fascinated by how much you can do and build! I bought (and built) my first printer in 2015 and have since then always admire the possibilities you have with of 3D printing, especially to fix, recycle, and reuse things. When I heard about this challenge, I could not resist but to participate! Using 3D printers to improve our world and help people – this is my vision of a 3D printer at its best!” You can view more from Sylvain on Instagram and Thingiverse.

If you have more questions, you can tune in to more discussion on 3D printing fast furniture on our forum and stay tuned for future 3D printing contests by following us on social media @re3Dprinting on Facebook, Twitter, Instagram and sign up for our monthly newsletter for the latest updates and opportunities. What’s a global challenge you want to solve using 3D printing?

Cat George

Blog Post Author

3D Printing Connectivity In Post-Maria Puerto Rico

re:3D had a #HurricaneStrong year in 2017 – our Houston team was hit by Harvey and our team in Puerto Rico withstood Hurricane Irma and Hurricane Maria. June 1st marks the official beginning of hurricane season in Puerto Rico and in this series, we are highlighting stories of impact and insight to encourage #3DPrintedPreparedness this year.

It’s no surprise that the 3.4 million people in Puerto Rico struggled to communicate after Hurricane Maria.

90% of cell towers were damaged, satellite phones were rendered useless, and over 1,000 wireless antennas were lost. For the wireless antennas in operation, they require 8-9 generators powered by diesel fuel – which not only costs a whopping $150 or so an hour but is also particularly problematic when Puerto Rico experienced a massive shortage of gasoline that is needed to fuel the Island until the infrastructure is fixed. The communication infrastructure was severed and the use of typical WiFi that requires sending a large amount of data was impossible. But some entrepreneurs decided to see this problem as an opportunity and created a connectivity solution.

Founders Jonathan Diaz Sepulveda, Victor Santiago, and Saul Gonzalez of a local software development startup – ALQMY – used Gigabot to 3D print a prototype and design Low-band Frequency Network that is uniquely capable to function in the post-hurricane conditions. 3D printing gave the team access to the technology needed to create products quickly and rapid prototype working devices.

alqmy-firestarter5

The devices were designed using Rhino 6 and printed in PLA.

alqmy-firestarter2

These walkie-talkie-esque prototype products called Firestarters were equipped to operate on lower bandwidth frequencies, similar to the communication technology used in pagers. The devices were able to create a decentralized wireless network without having to depend on the decimated infrastructure, and had the capability to connect people within 1.5 miles of each. Not only were people able to connect by sending SMS communications but the devices also enabled sharing of GPS information. Puerto Ricans would be able to coordinate allocating petroleum for those in need, bringing food to one another, and connecting with loved ones about their ongoing living conditions and safety.

While this product is operational and still in prototype stage, the founders have entered the next phase of manufacturing Firestarter at scale as part of their bigger vision to make these devices available to people as preventative emergency measures before it’s too late. This access to connectivity in emergency situations is particularly close to Saul’s heart – his community in Utuado had to bury a loved one in a backyard without being able to contact supportive emergency services. Firestarters are affordable products that come with the peace of mind of community connectivity and are still relevant today in Puerto Rico as recovery continues to be a work in progress. Connectivity continues to be an obstacle, and yet is imperative for ongoing recovery which is especially top of mind as hurricane season begins again starting June 1st.  Beyond Puerto Rico, ALQMY is sharing this technology with the world by making it open-source so others can proactively learn from Puerto Rico’s experience and prepare for emergency situations.

alqmy-firestarter4

It’s entrepreneurs like these who are coming together and building a more resilient Puerto Rico, utilizing technology to lead the next generation of innovation. According to Saul, the entrepreneurial ecosystem here is more positioned than ever to flourish – evolving into a culture of tight-knit community and open idea sharing. They are participants in one of the most innovative projects in Puerto Rico where the city of Bayamon has taken on a project to become the world’s smartest city by launching the first Internet of Things lab, applying technology to things like agricultural technology, transportation, and more. Beyond producing Firestarter, ALQMY offers software development services at affordable prices. Get in touch to learn more about them, their services, and the Firestarter prototype.

Cat George

Blog Post Author