High-Voltage Innovation: Creating Tools and Training Models with a Utility Company

Here’s a question: when was the last time you thought about what happens when you flip on a light switch?

We take for granted this everyday miracle without much thought to what goes on behind the scenes to make the lights turn on. Only once the power goes out do people suddenly take notice of this invisible luxury that our daily lives rely on. Lighting our homes, charging our devices, refrigerating our food, powering hospitals and public transportation and the nation’s economy – life as we know it hinges on the seamless, invisible flow of electrons we call electricity.

But, perhaps, everyone once in a while, you have taken note – maybe while driving on the highway past towering transmission lines stretching as far as the eye can see – of the massive system around us that goes mostly unnoticed on a daily basis, and how little you know about how that system functions.

Today’s story may change that for you.

The electrical grid in this country is over a century old. The first commercial central power plant in the US – Pearl Street Station in Manhattan – opened in 1882 and served 82 customers.¹ Today, the US electrical grid is made up of over 7,300 power plants and 160,000 miles of high-voltage power lines, serving over 145 million customers.²

The focus of our story today is one of the largest of the roughly 3,000 utility companies keeping the lights on in the US. (Due to company policy they cannot disclose their name in external-company features and thus will remain nameless in this article).

Making safety a priority with hands-on training

Jim Patchen is a high voltage work methods specialist for said utility company. His job is to develop procedures on how to work safely around high voltage. His office is a veritable mini-museum of utility relics from a bygone era.

As equipment from the field has been retired over the years, he’s rescued treasures from a certain fate as scrap metal. Artifacts like ammeters, voltmeters, control switches, and molten and re-hardened piles of metal from errant tool mishaps start at the floor and line shelves up to the ceiling.

As for his collector’s habit, Patchen explains his motivation behind this essential preservation of history. “It is important to understand the legacy of this industry,” he says. “Early on, work methods and tools were quite primitive, but over time they have evolved. It’s good to know where you came from so that you know where you’re going.”

The job of every utility company is to generate electricity and transport it to customers. This is, of course, a highly simplified explanation, but the general flow is as such: electricity is created at a generator – taking the form of power plants, hydroelectric dams, solar panel arrays, or wind turbines – transported along transmission lines, and distributed to communities for end use.

Along the way are substations – the large, somewhat hectic-looking clusters of wires and electrical equipment you may notice while driving on the highway – which transform the electricity into high voltage for fast transport along transmission lines and into lower voltage for its final use in homes and businesses. Far from the chaos that they can appear to be to the untrained eye, substations are meticulously-organized, well-oiled machines that are crucial components of the electrical grid. And while designed for maximum safety of workers, they are also extremely high-voltage environments, which inherently pose a unique set of dangers to those in the vicinity.

“Working in a substation is difficult,” explains Patchen, “because it’s many, many circuits coming into one small location, so the high voltage environment is really concentrated. We have to work really [safely] around that to prevent injuries and incidents that could affect the grid.”

This particular utility company has over 1,000 substations in its service territory. As a work methods specialist, Patchen’s current role revolves around creating procedures to ensure the safety of workers in addition to the integrity of the grid and the power they’re providing to consumers. “If you make a mistake in a substation, you can impact thousands of customers,” he explains. “If I drop a screwdriver in a substation, I can take out 90,000 customers. So, everything we do is critical.”

Workers at the company go through a roughly three-year apprenticeship of rigorous training on how to work safely in such an environment. “Traditional training involves PowerPoints and lecturing,” explains Patchen. Unfortunately, he continues, the retention rate of knowledge taught in these sorts of settings tends to be abysmal. Their goal is to incorporate more tactile learning to keep students engaged throughout lessons.

There is always hands-on training out in the field for all students in the apprenticeship program, but the company wanted the ability to bring this type of learning into classrooms on a daily basis. They saw the value of using scale models of real-world equipment on which students could practice skills like protective grounding in a safe, unenergized environment. The models give students the opportunity to test their proficiency, and teachers the ability to confirm that their lessons are getting through and sticking. “They’re able to practice and prove their understanding of what they’re being taught,” explains Patchen, “and then you’re able to validate knowledge that way.”

Patchen began by building these training models by hand. He estimates that he created his first substation model in 1999, using components that he found at the hardware store. Cardboard tubes and spark plugs come together to form a miniature substation on which students can practice, with no danger of a deadly misstep.

When Patchen caught wind of the powers of 3D printing, its potential to be applied to his work was immediately apparent. “When 3D printing came into the picture, we thought, ‘Oh man, we could really make these models much more realistic.’” He also saw the opportunity to start reproducing models for other locations at a pace that just wasn’t feasible when he was building each one by hand.

“If I was gonna buy a printer, I wanted one with a big print platform,” Patchen recounts. Their size requirements are varied, he explains. Sometimes their prototyping needs are small-scale, but other times they want the ability to create large objects that would dwarf the average desktop printer. “We wanted…a single purchase that would best fit both those kinds of parameters,” he says.

He did his research and found re:3D. “The Gigabot was amazing because of its large platform and the ability to print small and large, no matter what our needs might be.” Patchen is now in the process of 3D modeling his original substation in CAD and printing out its 21st century cousin.

Patchen explains that the company recently invested in a state-of-the-art training facility, where he sees abundant opportunities to use their Gigabot for educational purposes. “Our goal as a utility is to be a leader in our industry,” he says. “In order for us to do that, we have to lead in safety, innovation, and technology. We believe that 3D printing is gonna help us get there.” 

Tool creation from then to now

One challenge of the work is that, between different eras of design and the wide range of equipment manufacturers, a single type of equipment may have several different designs out in the field.

Because of this, there is not necessarily a one-size-fits-all tool for every job and every company. This can leave utilities to do their own tool creation when needed, to make the job safer and more efficient for workers and keep power flowing to their customers. Oftentimes, workers see areas for improvement, opportunities for a new tool that doesn’t exist that would make their jobs easier.

“When I first hired on, I was a high-voltage substation electrician. I worked in the field for many years,” explains Patchen. “If you had an idea for a tool that you wanted to create, you would have to draw it on a piece of paper or a napkin and bring it down to a local machine shop, and then they would do their best to build it.” That process, Patchen recounts, could take weeks to months – and that was just to get an initial prototype.

Anyone who’s been through the development of a product knows that the back and forth of the process – when not done in-house – can be quite costly in both time and capital. The first iteration comes back – often after a lengthy lead time – and design flaws become apparent. Revisions are made and submitted, and the process is repeated. More waiting, more money.

“Today with 3D printing, you can take your ideas and concepts and prove them out,” Patchen explains. “The average person can change the industry.”

3D printing cuts down on the tool design process in both the time and cost departments. A design can be printed and reworked on repeat until all the kinks are ironed out. “Then,” Patchen explains, “I could go spend the money at the mill or the machine shop, and it’s actually effective spending at that point.”

It goes without saying that this also slashes a massive amount of time from the process. They can internally turn around dozens of 3D printed iterations and settle on a final design in less time than a machine shop could get a first version back to them. “It’s a very cost-efficient way to change the industry using the field employees’ input.”

The challenges of tool development

Nowadays, Patchen’s tool creation process typically involves a manufacturer, so that when a design is finalized it can be mass-produced and made available on the market to any utility company who may also have a need for it.

There are several challenges that Patchen is confronted with when he’s approached with a tool idea from a field employee.

The first is the broad range of equipment designs that they’re making these tools to service. “In these substations, there’s stuff that was built in 1920, there’s stuff that was built last month,” he explains. This means that the same device with the same function can take different forms depending on what era it’s from. “When we have to build something, we want to make it fit all of those,” he says. “We want to be able to make one product, one time, and do it right.”

The second challenge is their partner in tool creation: the manufacturers. Patchen starts the process by approaching a manufacturer with a tool concept, they come back with an initial design, and the utility workers trial it out in the field. This, Patchen explains, can be tricky with manufacturers who aren’t in their line of work. “A lot of times, when the manufacturer’s trying to understand what your needs are, they’re not in the field, they don’t work in your environment,” he says. “They make tools, [but] they don’t understand how you’re using them.”

This can result in tools that are inconvenient or awkward to use and therefore difficult to actually put into practice, defeating the purpose of creating them in the first place.

With 3D printing, Patchen found a solution to this flaw in their design process. “When you get an end-user involved in creating prototypes, you’re really closing the gap on the amount of time and the cost it takes to create useful tools.”

Now, he and his team handle the early stages of the process, modeling CAD files and printing initial prototypes in-house. By the time they approach a manufacturer with a tool concept, they have a 3D printed prototype that’s already been put through the ringer out in the field. This allows them to leapfrog several steps ahead in the production process. “3D printing has enabled us to improve our innovation when it comes to creating new tools or specialized tools across a very diverse line of equipment,” he explains. “We’re able to come up with concepts, print the prototypes, and trial them out in the field, so when we communicate back to our manufacturer, the data is more accurate.”

Rather than discovering a design flaw after something has been expensively injection-molded, Patchen and his team can work out the kinks on their end and ensure the design they send to a manufacturer is accurate from the get-go. All that’s left to do at that point is create the tooling to mass produce it. Says Patchen, “It saves [the manufacturer] money, it saves us money in the long run, and lots and lots of time.”

At the 2019 ICUEE conference in Louisville, Kentucky – the largest utility and construction trade show in North America – four tools Patchen and his team helped design were on display. It’s a big honor at such a lauded industry event, but his focus remains on safety and sharing innovation so that other utilities across the nation can benefit. “I’m not trying to make money,” says Patchen. “I’m just trying to make it better for the employees in the field.”

Sparking industry innovation through new tool creation

Where taking a tool from concept to a purchasable physical product used to be a months- to years-long process, Patchen explains that 3D printing has given them the ability to slash that development time down into the weeks. “That’s huge when it comes to our type of work where we’re in such a high-voltage, dangerous environment.”

Much of the challenge and danger of the job stems from the simple fact that a utility company’s singular focus is keeping the lights on.

When equipment needs maintenance, they do what they can to keep the power flowing. This means that workers are almost always working near energized, high-voltage equipment – hence the necessity of Patchen’s job. And although there is always an inherent level of risk to a job which necessitates working in close proximity to high voltage, Patchen’s aim is to protect workers through the development of new tools, training, and work methods.

“Technology is changing our industry,” says Patchen. “Every six months, there is something new.” The blistering pace of innovation lifts the industry as a whole, but the challenge, Patchen explains, is staying on the forefront of that.

“We don’t want to sit back and just watch that happen. We want to be a leader in that,” he explains. “3D printing gives us the ability to be part of that process – to lead innovation.”

One ubiquitous tool used in the field is a live line stick, commonly known in the business as a hot stick. The lengthy, fiberglass poles allow utility workers to perform a variety of tasks on energized equipment, insulating them from the electricity and keeping them at a distance from machinery in the case of a malfunction or electrical arcing. The end of the stick operates as a mount for a variety of different accessories that serve a wide range of purposes, like pulling fuse and operating switches. 

One hot stick variation that Patchen’s team uses is a switch lubricator. Workers were struggling to open sticky switches, often having to use a stick to forcibly hit at a switch five or six times. They remedied this with a hot stick that dispenses lubricant onto a switch so that it can be opened easily with one knock.

Part of the design is a control unit, mounted on the opposite end of the hot stick, with a button for the user to dispense the lubricant. The unit the manufacturer sent was large and clunky: a worker had to remove a hand from the stick in order to get to the button, sacrificing dexterity.

Patchen designed a new mount with a slim profile – probably a quarter of the size of the original unit – enabling the stick operator to keep both hands on the pole and simply move a thumb to hit the button. “We were able to use our 3D printer to create this new prototype that’s much more ergonomic and gives the end user more control when working in an energized, high-voltage environment.” Printed on their Gigabot and mounted to the pole with velcro straps, the new unit Patchen created is being adopted by the manufacturer as an option on new purchases.

Gigabot has opened a door for Patchen and his team, and the tool requests are streaming in.

There was the gas cap to attach a generator to an extended time fuel tank, out of stock when they desperately needed it during a widespread emergency and power outage. Patchen 3D printed it.

There was the camera mount hot stick used to inspect energized equipment that carried a price tag of nearly $500. Patchen printed it. Their 3D printed version of the mount attaches to other sticks they already have, at a grand total of $1.67 apiece.

The list goes on.

“We were recently approached by several field crews to create a special plastic cover that would protect them in high voltage environments,” Patchen says. There was no product on the market that fit the bill, so he got to work on a design with a manufacturer.

The equipment that needed to be covered took a wide range of forms in the field, complicating the product development process. Patchen gave the manufacturer drawings of the equipment and their product idea. Eight months later they still didn’t have a workable prototype.

Patchen stepped in. “I used my 3D printer, made a prototype, and got the product finished within three weeks. Now it’s actually purchasable on the market.”

But perhaps Patchen’s most impressive project of all is a small, unassuming plastic hook.

He and his team were confronted with a scenario in which they needed to perform maintenance on a 500 kV substation. “In our system, the highest voltage that we have – and one of our most critical circuits – is the 500 kV,” he explains. “To clear that equipment or take it out of service, we’d have to de-energize the whole grid, which can be quite costly – tens to hundreds of thousands of dollars.”

A teammate came to him with an idea to circumvent the clearance with the help of a specially-designed plastic barrier which would allow them to safely perform maintenance without shutting down the system.

The solution came in the form of a rectangular-shaped, high-voltage plastic cover, which would enclose each of the 13.8 kV circuits that connect to the main 500 kV bank. The covers would be mounted from below and secured in place with rubber rope and plastic hooks. The hooks that the manufacturer sent with the covers, however, posed a problem.

Maneuvering from the ground at the end of a 14 foot hot stick, a worker had to insert one end of the hook into the eyelet of the plastic cover in order to fasten it. Workers were finding the hook’s design difficult to navigate into place at such an angle.

Patchen took the feedback from the field employees, reworked the hook’s design, and printed out a new version on their Gigabot. The slight tweaks to the hook’s form were a game-changer. Where workers previously had to fight the old hook into the eyelet at an awkward angle, the new design naturally wants to snap into place.

“This small, plastic hook took about three hours to print, and it cost around five dollars.” Patchen can’t underscore its value enough. “We were able to take that [3D printed] hook and share it with other crews, and we avoided many, many 500 kV clearances because of it. This small, five dollar device saved us hundreds of thousands of dollars.”

He smiles and gestures towards their Gigabot. “That’s paid for the printer quite a few times.”

Morgan Hamel

Blog Post Author

3D Printing Sparking Innovation at Stellar Industries

Have you ever walked by a construction site, looked at a massive piece of equipment that completely dwarves you, and wondered, “How do they change that massive tire if they get a flat?”

Stellar Industries has the answer to that question.

Stellar designs and manufactures hydraulic truck equipment – cranes, hooklifts, tire service, and more – for the construction, mining, and utility industries. In other words, they make the equipment to change those 12-foot-diameter tires, as well as perform a lot of the other service on hulking pieces of industrial machinery. It is interesting that 3D printing could be use to do something as intriguing as this. Luckily there are mark downs for those who are interested in finding computer systems that might be able to help.

A Gargantuan Operation in Garner

Stellar is based in the small Iowa city of Garner, and driving through downtown feels a little like driving through a Stellar Industries ad. Every other building seems to have a Stellar sign on its facade; the employee-owned company employs some 400 people there and sprawls across town.

Hydraulic truck manufacturing is a massive industrial operation that requires a lot of space, and the Stellar warehouses that dot the landscape each contain some portion of the truck-manufacturing process.

There’s the shop section, replete with engineering toys like enormous CNC machines and laser cutters, huge press brake machines that bend pieces of steel like putty, sparks flying from plasma cutting robotic arms and human welders alike. Another gargantuan building houses just the paint portion of the process, where truck bodies receive their coats on a journey along a carwash-esque track. The final stop of the trucks, the assembly building, is where everything comes together and the trucks take shape, workers flitting around the lifted rigs with tool boxes.

In a slightly less hectic area of the assembly building, a large wooden crate on wheels has arrived. It’s Stellar’s second Gigabot.

The Road to 3D Printing

“It was quite a journey.”

Engineering Manager at Stellar Industries Matt Schroeder recounted how they got to the point of having their second in-house 3D printer. “About 5 years ago, we looked at 3D printing, and it was just really expensive and very limited.”

What they were interested in doing was creating tools to help the folks in the assembly portion of the Stellar Industries operation.

“When we first started getting into the 3D printing realm, we needed some assembly fixtures.” Scott Britson is the Assistant Engineering Manager and has been in the Design and Engineering Department for 16 years.

Scott explained that different clients get differently configured trucks: different bodies, different components – sometimes customer-supplied – mounted in unique ways. They wanted to make the assembly team’s job easier in doing these custom setups, so that, as Scott explained, “when we repeat a truck for a customer, they get the same exact truck that they ordered from the first build to the eighth build.”

Stellar had in fact been creating these assembly fixtures themselves pre-3D printer, but their only option was to make them using what was available. Matt recounted, “Before our Gigabot – and before we would even contract out 3D printing – it would be a very intensive process of working either internally or externally with the machine shop to painstakingly make a prototype.”

The fixtures they made were heavy, costly, labor-intensive pieces which also had the negative effect of pulling their machine shop away from actually producing truck components. “We were using aluminum, we were using steel, we were having to machine stuff, we were having to weld stuff,” explained Scott. It was amounting to be too much of a labor, cash, and time sink to produce the tools.

Their attention turned to 3D printing.

“With 3D printing, we knew we could get lightweight, we could go into certain areas and cut places out of the part that we needed to go around,” Scott explained. “It’s a lot easier than sending it to our machine shop.”

They began by outsourcing their 3D print jobs to third party service bureaus, but they reached a stopping point where they were getting quoted longer and longer lead times. “We realized,” Matt recounted, “this is a core competency we need to develop in order to be able to have faster response times and control our own destiny.”

Thus began the hunt for a 3D printer of their own.

A Big Machine for Big Manufacturing

“When we looked at 3D printers a few years ago, you were limited by the 8 x 10s, the smaller, more toy things that sit on your computer desk,” Scott explained, “which really didn’t fit our needs.”

Stellar manufactures big, industrial equipment to service even bigger industrial equipment. They needed something to match that. “We needed to go to something that we could build bigger things, bigger fixtures for the types of trucks that we build,” said Scott.

Stellar prioritized a few important features to them: first on the list was size. Another deciding factor, Scott explained, was “the ability to upfit your 3D printer to the newest advancements and not be stuck at a version one, version two, version three.” They wanted something that could evolve with them and stay current with advancements in the industry without them having to buy an entirely new machine. And lastly, they were looking for a company that would come in and teach them, to help make their team 3D printer-literate.

“That’s where Gigabot came into our eyes as the clear leader,” said Scott.

“Right around the first of the year, we received our first Gigabot,” Matt recounted, “and we immediately put it to work that day, printing some prototype parts and things that were in a backlog that we really needed to get a project back on task.”

They completed most of that work in about two to three weeks, explained Matt, and then an interesting phenomenon occurred. People from other departments got wind of the new toy at the office and started coming by to check it out.

Igniting Innovation

“It’s kind of a piece that everybody wants to come up and see, everybody wants to take a look,” said Scott, of their Gigabot.

It didn’t take long before projects that weren’t originally on Stellar’s radar began springing up.

Scott recounted, “We’ve had our assembly department come up to the Gigabot and say, ‘Hey, you’re doing that part, do you think we can get something like that for this?'” The Stellar engineering department works to draws up the idea in CAD and print out the design on their Gigabot. Within a matter of days, they can have the part in their hands.

The increased creativity and innovation sparked by the in-house 3D printer, as both Scott and Matt described, is palpable.

The whole Stellar team is, as Scott explained, “constantly thinking of new ideas and new things to help them improve their throughput.” As Matt put it, “Once we brought [Gigabot] in, it excited people’s ability to think outside the box; it got people thinking about innovation in ways that we originally we weren’t intending.”

Their Gigabot was suddenly awash in a steady stream of projects coming from all angles.

“Things that we wouldn’t have initially thought of,” Matt explained, “like, go/no go quality tools.” A common misconception about 3D printers – that they’re really only for prototyping – was quickly dispelled once Stellar got their hands on their Gigabot.

“I think something that was very eye-opening to me is the range of materials that we could print,” Matt mused.

“I was of the mindset that we could just print something in PLA and it was just this hard plastic proof-of-concept,” he explained, “but we’re printing very tough and durable materials, we’re printing things that can bend and stretch and flex. We’re printing gaskets. Things like that are not what we had originally envisioned, but we’re leveraging those now. Being able to print those large varieties of materials is really helping us.”

In Stellar’s weld shop are large 3D printed tack fixtures used for cranes. These fixtures are 70-85% cheaper than traditional metal fixturing, and let them keep their production equipment focused on end-product parts. 3D printing them also allows Stellar to keep their lead times down; depending on the size of the part, they are often able to deliver fixtures or tooling with just 24 hours’ notice.

Also in the welding area is an assortment of colorful, 3D printed rings used to designate the holes used for specific tool models. Using the 3D printed collars allows them to match the collars with any additional plastic parts, and are much more durable than denoting them with markings in paint or tape.

Their maintenance department has taken a liking to the new 3D printer, finding ways to cut costs on expensive replacements. “We had a small component for a paint system that was several hundred dollars to replace, and you had to buy the entire kit to do so,” Matt recounted. “We were able to look at the small part, we created it in 3D and printed it over that night, and they were up and going the next day. So it was very fast and it was very economical.”

And, of course, there are the assembly jigs and fixtures that originally spurred the Gigabot purchase in the first place. The lightweight, low-cost 3D printed pieces are night and day compared to their first-generation, machine-milled and welded metal brethren, and they’re helping the Stellar assembly team become more efficient and effective with custom truck builds.

“We’re able to keep spacing on parts, we’re able to drill new holes in the fixtures for the mounting,” Scott explained. “We’re able to do a lot more for our shop to make it more consistent – they’re not having to get the tape measure out and make sure they’re not getting mis-measurements. They have the fixtures there so that they’re getting the exact location that they need.”

Stellar’s mind has been firmly changed since their original belief that 3D printing was solely a prototyping tool. Matt mused, “I think there is going to come a tipping point where we will produce more and more production parts on our machines versus prototyping parts.”

Bringing in Backup

“I don’t think in the beginning we knew that we would be running the Gigabot nonstop,” said Scott.

“From the day that we got it to about 45 days down the road, that thing was running 40 days, day and night,” he recalled. “The only time that it was down was because…we didn’t have it running through the weekend, or we were letting the bed cool to pull the prints off the Gigabot.”

Matt also recounted the early days, ping-ponging between projects they originally intended for their bot and new unexpected ones that came out of left field. The two angles kept their machine plenty busy. “In short, we were able to keep the machine running non-stop for about six months,” he said. “There were just a couple of times for some minimal preventative maintenance that we had the machine down, and it’s still running around the clock today.”

“In fact,” Matt continues, “we have been so busy we’ve had to get a second machine going.”

In the quiet side room off the main assembly floor, they pry the wooden boards of the crate apart with the excitement of kids opening up a new toy, unveiling Stellar Gigabot number two.

Within minutes of getting it uncrated and into the office, it’s already begun printing.

Learn more about Stellar Industries on their website: www.stellarindustries.com

Morgan Hamel

Blog Post Author

Digital to Definitive: The Genesis

This is the first video in a series about Digital to Definitive, a company started by Texas-based Gigabot owner Darrel Barnette.

Darrel Barnette was one of the first Kickstarter backers of the original Gigabot four years ago – his bot’s serial number is GB2-028.

He got his Gigabot with no prior 3D printing experience – he had a background in aerospace engineering and a desire to use to use the blossoming technology to create product ideas he had been holding onto in his head.

It took him assembling his bot and starting to use it before he thought of the idea to make a business out of it. Two forces combined to plant the idea in his head.

One, his job at the time had him traveling a lot, which he wasn’t a fan of; and two, he began to see the power of the technology for himself. “Having the 3D printer and the capability of being able to make my own parts for the first time…was just enticing to me,” he explains.

Darrel began to realize that a business opportunity lay in the new Kickstarter product he had gotten for himself.

Entrepreneurs, inventors, tinkerers, dreamers – take note. Darrel’s got a story you’re going to want to hear.

Morgan Hamel

Blog Post Author

Making a Syracuse University Economics Class Accessible Using Gigabot

Working in the 3D printing industry, one can become accustomed to consistently being surprised and impressed by new use cases of the technology. But every so often an application of Gigabot comes around that truly stands out, both as a demonstration of the power of the technology to do good as well as testament to a user thinking out of the box.

This particular story from Syracuse University does just that.

Watch Part 3 of their story to see this creative, inspirational use of their Gigabot to aid a student.

Morgan Hamel

Blog Post Author

Groundbreaking Veterinary Cancer Treatment with Texas A&M

This is a two-part video story. Part one is below, part two is at the bottom of the post, and touches on the other ways Dr. Deveau put Gigabot to work at the University.

Texas A&M’s Veterinary School is training the vets of the future, and they have the tools to prove it.

Dr. Michael Deveau, Radiation Oncologist and Clinical Associate Professor at the University, began following the news of emerging 3D printing in the veterinary space several years ago. He saw a potential for the technology in his practice both as a teaching tool and surgical aide, but what originally piqued his interest was something a little off the beaten path.

It was the plight of a small dog named Cootie that ultimately fueled the university’s acquisition of Gigabot.

Cootie and her desperate owner traveled from New Jersey to Texas, hoping to get her on an experimental trial for her Cutaneous Lymphoma, a rare type of cancer that affects the skin. The treatment employed in humans had been deemed impossible to clinically implement in the veterinary field, meaning a death sentence for animals affected with the disease. With the barrier protecting their body from the outside world compromised, animals either succumb to infection or have a loss of quality of life to such a point that their owners elect euthanasia.

Dr. Deveau had a different plan in mind for Cootie.

Employing Gigabot, he set about using 3D printing in a fashion never before employed in the veterinary field. He’s eager to point out that this was only one patient, but the results they achieved were nothing short of astounding.

Dr. Deveau hopes that the technique he’s developed can be adopted by other treatment centers around the world to address those animals diagnosed each year with this previously untreatable condition.

Read more about small animal oncology at Texas A&M: http://vethospital.tamu.edu/small-animal-hospital/oncology

For information Texas A&M’s Veterinary Medicine department: http://vetmed.tamu.edu/

Morgan Hamel

Blog Post Author