At the Field, a CT (computed tomography) Scan is one starting point for 3D printing. I’ve seen CT scans of a variety of human and animal mummies, historical musical instruments, and more. The CT scan then must be segmented (I did some of this!). This means that someone needs to work with the scan in a computer program to distinguish all the various material components of the object. For example, I had to separate bone from different layers of wrappings into separate regions of interest in a mummy cat.
The Field also gets creative with 3D models before any printing happens. For example, in the “Opening the Vaults” Wonders of the 1893 World’s Fair” exhibit there was a giant touch screen table that showed an interactive 3D model of a mummy. Museum-goers can manipulate the mummy to swivel in any direction, unwrap the mummy, and reveal its cross-sectional layers.
In the exhibit, “The Machine Inside: Biomechanics,” there is a life size cheetah frozen in mid-run. The Biomechanics exhibit that travels internationally, however, uses a cutaway cheetah that was made using a 3D printed skeleton. The skeleton is a model based on photogrammetry of the cheetah taxidermy in the Field Biomechanics exhibit and a CT scan of a preserved cheetah body. Moving a real cheetah body around all over the world involves high risks of damaging it, but using a 3D model is much safer and more cost-efficient. The cheetah bones could be printed on site at these various locations. Gigabot was used to make smaller test prints of the cheetah bones back at home in the Field. Check out the photos below to see examples of final prints of the cheetah bones used in exhibits, and for additional information, visit https://www.fieldmuseum.org/blog/mummies-and-cheetahs-3d